скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыУчебное пособие: Кинематическое и кинетостатическое исследование рычажных механизмов компрессоров

Учебное пособие: Кинематическое и кинетостатическое исследование рычажных механизмов компрессоров

Кинематическое и кинетостатическое исследование рычажных механизмов компрессоров


Построение плана механизма

Компрессоры подвижного состава железных дорог Российской Федерации одноцилиндровые и многоцилиндровые состоят из кривошипа (коленчатого вала) и присоединенных к нему структурных групп (группы Ассура). Например, V- образный компрессор (рис.1), независимо от угла между осями цилиндров “α состоит из кривошипа 1,шатунов 2 и 4, ползунов (поршней) 3 и 5. С точки зрения структуры этого механизма он состоит из механизма 1го класса 1го порядка (звено 1) двух структурных групп 1го класса, 2го порядка 2 модификации (рис.2).

Присоединением к кривошипу еще одной структурной группы можно получить 3х цилиндровый механизм (звенья 6 и 7 по рис.1).

Кинематический расчет механизма компрессора сводится к расчету параметров движения звеньев, входящих в состав указанных групп. При этом алгоритм определения этих параметров будет одним и тем же для каждой группы независимо от положения звеньев в механизме.

Для кинематического расчета механизма задается его кинематическая схема с указанием размеров звеньев, положение кривошипа в рассматриваемый момент времени и скорость его вращения.

План механизма (кинематическая схема) для выполнения расчетов графоаналитическим методом строится с использованием масштаба.

При расчете механизмов часто изменяют так называемый масштабный коэффициент КL ,равный отношению, действительных размеров звеньев к размерам на чертеже, т.е.

Например: действительная длина кривошипа LOA= 0.05м, отрезок ОА, изображающей его на чертеже, примем ОА=25мм.

Масштабный коэффициент КL при этом будет равен

КL=0.05/25=0.002 м/мм,

т.е. в 1мм чертежа содержится 2мм действительного размера. Фактически это масштаб уменьшения 1:2.

Иногда при построении кинематической схемы механизма необходимо определить недостающие размеры звеньев. Пусть, например, задано λ=LOA/LAB (параметр механизма), тогда длина LAB при заданном LOA и λ определится из соотношения LAB =LOA/ λ.

Разделив размеры всех звеньев на принятый масштабный коэффициент, найдем отрезки, изображающие их на чертеже.

Для выбора заданного положения кривошипа траектория точки А (окружность) разбивается на 12 равных частей от начала отсчета, в качестве которого чаще всего принимается положение точки А на линии ОВ. Отсчет положений точки А (по часовой или против часовой стрелке) производится в зависимости от заданного направления вращения кривошипа.

Положение точек В и С на линии ОВ и ОС находим методом «засечек» циркулем, установленным в точку А и содержащим размер звеньев АВ и АС, в принятом масштабе. На звеньях АВ и ВС необходимо указать положение их центров масс (в соответствии с заданием).

Размеры прямоугольников, изображающих поршни компрессора 3 и 5 не должны соответствовать их действительным размерам и выбираются произвольно как условное изображение поступательно движущихся звеньев.

Определение скоростей звеньев с помощью плана скоростей

Обычно принимается что кривошип вращается с постоянной угловой скоростью. Линейная скорость точки А кривошипа, как известно, определяется из соотношения:

VА=ω1 LOA, [м/с], (2)

где ω1-угловая скорость вращения кривошипа, которую определим по формуле

ω1=(2πn1)/60= πn1/30 [с-1]. (3)

Здесь n1-число оборотов кривошипа в мин.

Вектор скорости точки, движущейся по какой-либо траектории всегда направлен по касательной к траектории в этой точке. В нашем случае вектор скорости в точке А направлен по касательной к окружности в точке А, т.е. перпендикулярен к радиусу ОА. Из произвольной точки PV на плоскости проводим отрезок PVа произвольной длины, который будет в масштабе КV (масштабный коэффициент скорости) изображать скорость точки. Величина КV будет равна:

КV=VAVa [(м/с)/мм], т.е. масштабный коэффициент показывает сколько единиц скорости содержится в одном миллиметре отрезка РVa.

Далее определяем скорость точки В, принадлежащей одновременно звеньям 2 и 3. Звено 2 совершает сложное плоско-параллельное движение. В сложном движении скорость точки В определим в соответствии с векторным уравнением:

где  - вектор скорости точки В

 - вектор скорости точки А

 - вектор скорости точки В относительно А.

В векторном уравнении (4) скорость точки А известна по величине и по направлению (подчеркнуто двумя линиями), скорости VB и VAB известны только по направлению. Скорость точки В направлена по линии ОВ (движение ползуна-поршня 3 по направляющим), вектор скорости точки В относительно точки А будет направлен перпендикулярно отрезку АВ как к радиусу окружности описываемой точкой В в ее относительном движении вокруг точки А. в соответствии с этим из точки PV проводим луч параллельный линии ОВ, а из точки «a» отрезка PVа луч, перпендикулярный АВ. Пересечение этих лучей в точке «в» определяет отрезок PVв, который в принятом масштабе изображает скорость точки В, а отрезок «ав» изображает скорость точки В относительно точки А.

Направление векторов этих скоростей должно соответствовать уравнению (4), а их величина определяется из соотношений:

Аналогичным образом определяются скорости точки "С" и точки "С" относительно точки "А". Положение точек S2 и S4 (центров масс звеньев) на плане скоростей определяется в соответствии с условие подобия: их расположение на плане скоростей подобно расположению на схеме механизма. Так, например, если точка S2 находится на одной трети отрезка "АВ", то точка S2 на плане скоростей будет также находиться на одной трети отрезка "ав". Соединив точки S2 и S4 с полюсом плана скоростей получим векторы скоростей этих точек, а величина скоростей определится из соотношений:

.

Построенный план скоростей для механизма компрессора позволяет определить угловые скорости звеньев 2 и 4 в их вращательном движении.

Как уже говорилось, отрезок плана скоростей ав (вектор) обозначает скорость точки "В" относительно точки "А". Разделив величину скорости VBA на действительную длину звена АВ получим угловую скорость звена 2, т.е.

ω2=‌‌‌‌‌‌‌|Vва|/lAB [с-1]

Для определения направления угловой скорости ω2 необходимо вектор скорости VBA приложить к точке "В" (см. рис 1.). Нетрудно убедиться, что звено 2 при этом будет вращаться против часовой стрелки.

Угловую скорость звена 4 и ее направление определим аналогичным образом :

ω4 =‌‌‌‌‌‌‌|Vса|/lAC [с-1]

Построение плана ускорений

Построение плана ускорений так же начинаем со звена 1. В общем случае ускорение точки "А", лежащей на кривошипе определится из векторного уравнения:


где аАn -нормальное (центростремительное) ускорение, точки "А"

аАt-тангенциальное ускорение точки "А".

так как кривошип вращается с постоянной угловой скоростью аАt=0.

Центростремительное ускорение точки "А" определим по формуле:

аАn= ω12lОА=VА2/lОА [м/с2] .

Для построения плана ускорений из произвольной Pа проводим луч произвольной длины ( но не менее 100 мм) параллельно кривошипу. Зная величину ускорения аАn и длину отрезка Paa' (мм) определим масштабный коэффициент ускорений Ка.

Ка=|аАn| / Paa' [(м/с2)/мм].

Ускорение точки "В" в сложном движении шатуна определим в соответствием с векторным уравнением :

В уравнении (5) имеется 3 неизвестных по величине параметра при известном их направлении (подчеркнуты) одной линией. Для графического решения уравнения (5) необходимо определить величину одного из неизвестных параметров, в частности величину нормального ускорения точки "В" относительно точки "А" :

аВАn =‌‌‌‌‌‌‌|Vва|2/lав [м/с2]

Вектор ускорения аВАn направлен от точки "В" к точке "А" параллельно шатуну АВ. Величина отрезка изображающего ускорение аВАn определим из соотношения:

а'n'=| аВАn |/Ка [мм]

Определив величину ускорения аВАn и отложив на чертеже отрезок а’n решаем уравнение (5) графически. Для этого из точки Ра (полюса плана ускорений) проводим луч, параллельный линии ОВ, который соответствует направлению вектора ускорения точки "В", до пересечения с направлением вектора тангенциального ускорения аВАt.

Полученная фигура является решением уравнения (5); направление векторов на этой фигуре (план ускорений) должны соответствовать уравнению (5).

Величину искомых уравнений определяем умножением соответствующих отрезков плана ускорений на масштабный коэффициент ускорений:

аВАt=Ка·n'в ;

аВА=Ка·ав ;

аВ= Ка·Рав;

На плане ускорений, так же как на плане скоростей определяем положение точек S2 и S4 в соответствии с теоремой подобия, после чего находим величину ускорений центров масс шатунов 2 и 4.

аS2=Ka·Pa S2 ;

аS4= Ka·Pa S4 ;

Для звеньев 4 и 5 искомые ускорения определяем аналогичным образом в соответствии с уравнениями:

 ;

аСАn=(VCA2)/lAC ;

а'm'=| аCАn |/Ка;

аСАt=Ka· m'c;

аСА =Ka· a'c;

аС =Ka·PaC;

аS4 =Ka·Pa S4.

Величина и направление линейных ускорений характерных точек для звеньев 2 и 4 показана на рис. 4. План ускорений позволяет определить величину и направление угловых ускорений шатунов.

Угловое ускорение шатуна 2:

ε2=( аВАt)/lАВ [с-2]

угловое ускорение шатуна 4:

ε4=( аСАt)/lАС [с-2]

Направление этих ускорений определяется по направлению тангенциальных ускорений, приложенных в соответствующих точках (см.Рис.1 и рис.4).

Планы скоростей и ускорений позволяют определить характер движения звеньев механизма. При одинаковом направлении скорости и ускорения звенья движутся ускоренно, при разном направлении – замедленно.

В нашем случае: звено-1 движется равномерно (по условию), звено 2-ускоренно, звено 3-замедленно, звено 4- замедленно, звено 5-ускоренно.

Необходимо отметить, что кинематический анализ механизма необходимо осуществлять за цикл, который в данном механизме соответствует полному обороту кривошипа.

В предположении, что кинематические параметры механизма не изменяются скачкообразно, их определяют для восьми, двенадцати и более положений кривошипа в зависимости от условий поставленной задачи.

В этом случае план механизма, планы скоростей и ускорений строятся для каждого из этих положений.


Кинетостатический расчет механизма

Кинетостатическим, в отличии от статического, называется расчет механизма с учетом сил инерции. Целью кинетостатического расчета является определение сил, действующих на звенья механизма, реакций в кинематических парах и затрат энергии, необходимой для приведения механизма в движении и выполнения им работы в соответствии с его назначением.

Для выполнения кинематического расчета необходимо иметь:

- планы скоростей и ускорений для заданного положения звеньев механизма;

- величину масс подвижных звеньев и моменты их инерции (для звеньев, совершающих вращательное движение);

- закон изменения силы полезного сопротивления при работе механизма.

Кинетостатический расчет начинается с выделения из механизма групп Ассура, являющихся статически определимой системой. Вначале рассматривается группа, к которой приложена сила полезного сопротивления. В рассматриваемом здесь примере безразлично с какой группы начинать расчет. Вместе с тем, для расчета группу необходимо изобразить на чертеже в таком положении, в котором она находится в механизме с соблюдением масштаба (допускается увеличить размеры звеньев с изменением масштаба изображения).

Для выделенной группы определяем действующие на ее звенья силы (рис 5).

Сила тяжести шатуна G2=m2g (H)

Сила тяжести поршня G3=m3g (Н)

Сила инерции шатуна Pu2=m2 аS2 [H]

Сила инерции поршня Pu3=m2 аВ [H]

Силы инерции приложены в центре масс и направлены против вектора ускорения центра масс.

К звену 2 необходимо еще приложить момент сил инерции

Мu2= - IS2·ε2 [м]

который направлен противоположно направлению углового ускорения ε2, о чем свидетельствует знак «минус» в правой части уравнения. Неизвестную реакцию со стороны отброшенного звена заменяем произвольно направленными составляющими R12n и R12t ,величина которых и их истинное направление определяется в процессе выполнения расчета.

Реакция R63 со стороны направляющих поршня 3 (стенок цилиндра) является геометрической суммой силы нормального давления N и силы трения F, направленной противоположно направлению относительной скорости. Реакция RG3 отклонена от силы N на величину угла φ (угол трения), тангенс которого равен коэффициенту трения f. При расчетах механизмов принимают f=0,1 (полусухое трение), следовательно φ=arctgf ≈6°

Реакция в точке "В", где осуществляется соединение шатуна с поршнем является внутренней силой и не влияет на равновесие сил, действующих на эту группу.

Силу полезного сопротивления Рс определяем с помощью индикаторной диаграммы в соответствии с процессом, происходящим в цилиндре компрессора (всасывание, сжатие, нагнетание).

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.