скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Вплив гіпокінезії на біоелектричні властивості кістки

Залежність електричних показників кістки від змін складу та фізико-хімічних властивостей основних компонентів кісткового матриксу. Для моделювання змін водно-мінерального балансу кістки в умовах гіпокінезії використаний метод демінералізації препаратів in vitro. Контролем були недемінералізован препарати тих самих тварин.

Демінералізація препаратів кістки супроводжувалася зменшенням їхньої вихідної маси на 55% та збільшенням вмісту води на 48%. Істотно змінювалися ПЕВ препаратів. Якщо мпедансу свіжовиділених препаратів сягав 1,5 кОм, то після демінералізації він не перевищував 40 Ом. Активний опір до кінця періоду демінералізац зменшувався більше ніж у 34 рази, а реактивний опір - в 60 разів. Демінералізовані препарати втрачали залежність показників ПЕВ від частоти тестового струму. Очевидно, що в умовах гіпокінезії повної демінералізац кістки ніколи не відбувається, але і сама модель хімічної модифікації кістково тканини лише з відомим ступенем припущення відображає реальні процеси, що відбуваються в кістці при зменшенні функціонального навантаження. Однак два факти, що випливають із результатів цієї серії досліджень, становлять інтерес можуть бути використані для пояснення особливостей зміни пасивних електричних властивостей кістки в умовах реальної гіпокінезії: 1 - процеси демінералізац та гіпергідратації кістки є двома взаємозалежними процесами, які протікають паралельно; 2 - гіпомінералізація та гіпергідратація кістки спричинюють збільшення електропровідності й ємності.

Для дослідження впливу змін фізико-хімічних властивостей органічного матриксу на ПЕВ кісткової тканини використаний метод дозованої термічно денатурації. Встановлено, що при нагріванні препаратів кістки від 37 до 65єС мність, імпеданс, активний і реактивний опір істотно не змінювалися. Подальше нагрівання препаратів до 100єС супроводжувалося вірогідним збільшенням ємност на 105% і зменшенням на 47% імпедансу, активного й реактивного опору, що свідчило про розвиток денатураційних процесів в органічному матриксі.

Той факт, що зони фазових змін основних електричних показників кістки відзначалися при температурі, що перевищувала 600С і були подібні до зон фазового переходу колагену у процесі його термічної денатурації, дає змогу говорити про наявність зв'язку між ПЕВ кістки та фізико-хімічними властивостями органічного матриксу і, в першу чергу, колагену.

Кисневий метаболізм і пасивні електричні властивост кістки при гіпокінезії в умовах нормоксії і переривчастої нормобарично гіпоксії. Напруження кисню (РО2) у литковому м'язі щурів, як перебували в умовах жорсткої 28-добової гіпокінезії в атмосферному повітрі, не перевищувала 13,5±1,7 мм рт.ст., що на 43,7% менше відповідного показника контрольних тварин. РО2 у литковому м'язі щурів, які перебували в умовах жорсткої гіпокінезії та дихали нормобаричними гіпоксичними газовими сумішами, було вірогідно вище і сягало 19,2±1,9 мм рт.ст. (p<0,05).

Споживання кисню (VО2) кістковою тканиною діафізарної частини стегнової кістки контрольних щурів становило 0,09±0,012 млО2·100г-1·хв-1.

У тварин, як перебували в умовах жорсткої 28 добової гіпокінезії в атмосферному повітрі, VО2 не перевищувало 0,03±0,011 млО2·100г-1·хв-1 (p<0,05). При аналогічних режимах гіпокінезії в умовах переривчасто нормобаричної гіпоксії величини споживання кисню практично не відрізнялися від показників контрольної групи тварин. У щурів, які перебували в умовах гіпокінезії та протягом 8 год щодня дихали НГГС, маса стегнової кістки була лише на 15,5% (p<0,05) меншою, ніж у тварин контрольної групи. Діаметр діафіза та просвіту кістковомозкового каналу, а також товщина стінки діафіза не відрізнялися від відповідних показників контрольної групи тварин, хоча загальна тенденція до їх зменшення ще спостерігалася.

Аналіз складу кістки показав, що у щурів, які перебували в умовах гіпокінезії та дихали НГГС, відмінності у вмісті мінеральних речовин і води із тваринами контрольної групи не перевищували 9 і 21% відповідно (p<0,05). При цьому відзначалася характерна тенденція до збільшення вмісту органічних речовин. У щурів, що одержували НГГС на етапі преадаптації й у період дії гіпокінезії, маса та щільність кістки не відрізнялися від маси кістки тварин контрольної групи. Не було статистично достовірних відмінностей і у значеннях основних остеометричних показників, а також у вмісті мінеральних речовин і води. Однак тенденція до збільшення вмісту органічних речовин мала характер статистично значимо закономірності. Якщо вміст органічних речовин у компактній кістці тварин контрольної групи становив 0,52±0,03 мг/мм3, то у тварин дослідної групи він сягав 0,72 ±0,02 мг/мм3 (p<0,05).

Дихання НГГС у період обмеження рухливості щурів хоча й не попереджало повністю порушень ПЕВ кістково тканини щурів, але істотно зменшувало ступінь їх виразності. Розбіжності у значеннях ємності, імпедансу, активного і реактивного опору між дослідними та контрольними тваринами не перевищували 26,5, 30,6, 30,5 і 22,5% відповідно. Використання НГГС на етапі 14-добової преадаптації та в умовах гіпокінез призводило до вірогідного зменшення ємності на 42,2%, p<0,05, збільшення мпедансу, активного та реактивного опору на 43,2, 43,3 і 78,5% відповідно, p<0,05. Такі зміни показників ПЕВ кістки цілком закономірно можна пов'язати зі зміною її складу й, у першу чергу, збільшенням вмісту органічних речовин, які, як це відомо, мають більшу поляризаційну здатність і меншу електропровідність.

Виходячи з результатів проведених досліджень, вплив гіпокінезії на біоелектричн властивості кістки можна представити у вигляді наступної схеми:


Таким чином, на підставі проведених досліджень можна стверджувати, що відсутність адекватного навантаження на кістку може бути причиною виникнення низки змін з боку клітинних і позаклітинних елементів кісткової тканини, які призводять до порушень її здатності генерувати електричні потенціали у відповідь на механічне навантаження та забезпечувати необхідний рівень біоелектричної регуляц процесів фізіологічної перебудови кістки


ВИСНОВКИ

У дисертац наведено результати досліджень впливу гіпокінезії на біоелектричні властивост стегнової кістки щурів, які отримані методом визначення електричного потенціалу навантаження на поверхні кістки та мультичастотного імпедансометричного тестування в умовах дозованого механічного навантаження й обмеження рухливості. Отримано нові результати про закономірності змін потенціалу навантаження та пасивних електричних властивостей кістки в різних режимах гіпокінез переривчастої нормобаричної гіпоксії, які можуть бути використані для розробки нових підходів до діагностики й корекції патології кісткової системи.

1.         Електричний потенціал, який виникає на поверхні стегнової кістки щура при механічному навантаженні, зростає в експоненціальній залежності від величини прикладеного зусилля. Найбільший приріст потенціалу на одиницю навантаження забезпечують впливи, що не перевищують 50% маси тіла тварини.

2.         У період постнатального життя щурів електричний потенціал навантаження стегнової кістки залежить від віку тварини. Амплітуда потенціалу та його приріст на одиницю навантаження найменші у щурів пубертатного періоду, у дорослих - вони сягають максимальних значень, а в періоді вікової інволюції – зменшуються.

3.         У дорослих щурів після жорсткої 28-добової гіпокінезії електричний по-тенціал навантаження знижується на 20-25%. Найбільш чітко ці зміни виявляються у діапазон навантажень, що не перевищують 50% від маси тіла тварини. Це може бути однією з причин низької ефективності профілактичного використання фізичних навантажень при розвитку вікової остеопенії та уповільненого відновлення кісткової тканини в період післядії гіпокінезії.

4.         Віков відмінності пасивних електричних властивостей стегнової кістки щурів визначаються особливостями її складу та структури в різні періоди життєвого циклу. Встановлено наявність вірогідного прямого кореляційного зв'язку між електричною мністю та вмістом води (r=+0,858) органічних речовин (r=+0,485), а також між імпедансом, активним і реактивним опором і вмістом мінеральних речовин (r=+0,766; r=+0,765; r=+0,893). Найбільш істотн зміни пасивних електричних властивостей кістки щурів відбуваються в періоди пубертації (1-3 міс) та інволюції (вік тварин перевищує 18 міс).

5.         Жорстке тривале обмеження рухливості щурів призводить до зменшення маси, щільності та збільшення ступеня гідратації кістки. Для розгорнутої картини індуковано гіпокінезією остеопенії притаманно зменшення імпедансу, активного й реактивного опору і значне збільшення ємності кісткової тканини.

6.         Критичним етапом у зміні пасивних електричних властивостей кістки при низькому функціональному навантаженні є підвищення гідратації кісткової тканини, що призводить до значного збільшення її електропровідності. Наявність тісного зворотного кореляційного зв'язку між вмістом води та мінералів у кістковій тканині (r=-0,890) дозволяє використати показник рівня гідратації як додатковий критерій ступеня її демінералізації.

7.         Жорстка гіпокінезія зменшує напруження кисню в недостатньо навантажених м'язах швидкість споживання кисню кістковою тканиною. Переривчаста нормобарична гіпоксія попереджає істотні зміни цих показників та активує анаболічні процеси у кістковій тканині, про що свідчить збільшення вмісту органічних речовин у кістковому матриксі.

8.         Переривчаста нормобарична гіпоксія зменшує прояви індукованої гіпокі-незією остеопенії та змін пасивних електричних властивостей кісткової тканини. Максимальний остеопротекторний ефект виявлено після впливу газових сумішей з низьким РО2 на етапі преадаптації та у період обмеження рухливості.


СПИСОК ПРАЦЬ, ОПУБЛІКОВАНИХ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

1.   Левашов О.М., Сафонов С.Л. Влияние моделирования микрогравитационной разгрузки задних конечностей на пассивные электрические свойства бедренной кости белых крыс//Пробл. управления и информатики – 2003, №5. -С.122-130. (Особистий внесок здобувача: Моделювання розвантаження задніх кінцівок щурів, проведення досліджень електричних властивостей стегнової кістки, написання статті).

2.   Березовский В.А., Левашов О.М., Сафонов С.Л. Пассивные электрические свойства компактной костной ткани в норме и при дефиците механической нагрузки//Укр. мед. альманах. -2003. -Т.6, №2. -С.162-164. (Особистий внесок здобувача: Моделювання дозованої гіпокінезії, проведення досліджень електричних властивостей стегнової кістки, статистична обробка результатів, участь у написанні статті).

3.   Березовский В.А., Левашов О.М., Сафонов С.Л. Влияние дозированной гипертермии на пассивные электрические свойства компактной костной ткани//Клін. та експерим. патологія. -2004. -Т.ІІІ, №2,Ч.1. -С.212-214. (Особистий внесок здобувача: Проведення дозованої термічної денатурації кістки та досліджень її електричних властивостей, участь у написанні статті).

4.   Березовський В.Я., Левашов О.М., Сафонов С.Л., Левашов М.І., Літовка І.Г. Імпедансометричне тестування компактної кісткової тканини щурів за умов обмеження рухливості//Фізол. журн. -2005. -Т.51, №5. -С.23-30. (Особистий внесок здобувача: Проведення імпедансометричного тестування кісткової тканини, участь у написанні статті).

5.   Березовский В.А., Левашов О.М., Сафонов С.Л., Лахин П.В. Мультичастотная импедансометрия состояния костной ткани//Укр. морфол. альманах. -2005. -Т.3, №4. -С.5-10. (Особистий внесок здобувача: Проведення досліджень стану кісткової тканини за методом мультичастотно мпедансометрії, статистична обробка результатів, участь у написанні статті).

6.   Левашов О.М., Березовский В.А., Левашов М.І., Сафонов С.Л. Влияние прерывистой нормобарической гипоксии на кислородный метаболизм и биофизические свойства кости при гипокинезии//Укр. мед. альманах. -2007. -Т.10, №5. -С.105-109. (Особистий внесок здобувача: Проведення досліджень споживання кисню кістковою тканиною, статистична обробка даних, участь у написанні статті).

7.   Деклараційний патент №750019А, Україна, МКІ А61К 50/00 G01R 17/00. Пристрій для досліджень електричних характеристик біологічних об’єктів: Березовський В.Я., Сафонов С.Л., Левашов О.М.; Заявлено12.06.2003; Опубл.15.12.2006, Бюл. №2. – 4 с. (Особистий внесок здобувача: Участь у розробці технічного завдання на пристрій, проведення лабораторних випробувань, участь у написанні заявки на видачу патенту).

8.   Левашов О.М., Сафонов С.Л. Влияние микрогравитации на пассивные электрические свойства кости//Наукові космічні дослідження: Школа-семінар для молодих науковців: Матеріали доповідей. - Жукін, 2003. - К.:ІВЦ Політехніка, 2003. –С.47-49.

9.   Березовский В.А., Левашов М.И., Сафонов С.Л., Левашов О.М. Использование метода импедансометрии в остеологии //“Вторинний остеопороз: епідеміологія, клініка, діагностика, профілактика та лікування”, 19-21 березня 2003 р., Київ-Тернопіль. Пробл. остеології. -2003. –Т.6, №1-2. С.53-54.

10.      Levashov M., Berezovskiy V., Saphonov S., Levashov O. The bone electrical properties in hypokinetic rats//24th Annual International Gravitational Physiology Meeting. -Santa Monica, California, USA, 4-9 May 2003. Abstracts. -P.S. I,NN15.

11.      Левашов О.М., Сафонов С.Л. Влияние гипокинезии на состав костного матрикса и пассивные электрические свойства костной ткани//Наукові космічні дослідження: Школа-семінар для молодих науковців: Матеріали доповідей. - Жукін, 2004. -К.:ІВЦ Політехніка, 2003. –С.55-56.

12.      Левашов О.М. Спрямована хімічна модифікація кісткової тканини як метод моделювання патофізіологічних змін її електричних властивостей при дефіциті механічного навантаження: Конф. для мол. учених Інституту фізіології ім.О.О.Богомольця НАН України „Перспективні напрями досліджень сучасної фізіології”. Київ, 17-18 листопада 2003 р. //Фізіол. журн. -2004. –Т.50, №3. –С.105-106.

13.      Berezovskiy V., Levashov O., Saphonov S. Changes in composition and passive electrical properties of rats compact bone tissue in hypokinesia and normobaric hypoxic stimulation//25th Annual International Gravitational Physiology Meeting. - Moscow, Russia, 6-11 June 2004. Abctracts. P.S. II, NN7.

14.  Левашов О.М. Потребление кислорода костной тканью при уменьшении функциональной нагрузки на кость//Наукові космічні дослідження: Школа-семінар для молодих науковців: Матеріали виступів доповідей. - Жукін, 2004. -К.:ІВЦ Політехніка, 2005. –С.26-27.

15.      Левашов О.М. Возрастные особенности гидратации компактной кости ткани белых крыс: Тези доп. IV Нац. конгр. геронтологів і геріатрів України. - Київ, 11-13 жовтня 2005р. //Пробл. старения и долголетия -2005. -Т.14, приложение. - С.32

16.      Березовский В.А., Левашов М.И., Сафонов С.Л., Левашов О.М., Лахин П.В. Возрастные изменения пассивных электрических свойств костной ткани: Тези доп. IV Нац. конгр. геронтологів і геріатрів України. - Київ, 11-13 жовтня 2005 р.//Пробл. старения и долголетия -2005. -Т.14, приложение. - С.82.

17.  Березовський В.А., Левашов О.М., Сафонов С.Л., Левашов М.І., Безчасна В.О. Склад і біоелектричн властивості компактної кістки білих щурів у різні періоди постнатального онтогенезу: Матеріали XVII з‘їзду Укр. фізіол. т-ва з міжнарод. участю, Чернівці, 18-20 травня 2006 р. //Фізіол. журн. –2006. –Т.52, №2. –С.213.

18.  Levashov O.M., Saphonov S.L., Levashov M.I. The effects of normobaric hypoxic preadaptation on bone electrical properties and bone composition in hypokinetic rats//VIII World Congress International society for Adaptive Medicine (ISAM), Moscow, Russia, June 21-24, 2006. Abstracts. - II-4.16. –P.91.

19.  Березовский В.А., Левашов О.М., Сафонов С.Л., Левашов М.И. Stress generated potential (SGP) как индикатор состояния кости//Материалы V Международ. симпоз. “Актуальные проблемы биофизической медицины”, Киев, 17-19 мая 2007 г. – С. 21-22.


АНОТАЦІЯ

Левашов О.М. Вплив гіпокінезії на біоелектричні властивості кістки. - Рукопис. Дисертація на здобуття наукового ступеня кандидата медичних наук за фахом 14.03.04 - патологічна фізіологія. - Інститут фізіології ім. О.О. Богомольця НАН України, Київ, 2008.

У дисертац наведено результати досліджень впливу низького функціонального навантаження на біоелектричні властивості кістки, які отримано методом відведення потенціалу навантаження (ПН) з поверхні стегнової кістки щурів лінії Вістар та мультичастотного імпедансометричного тестування в умовах дозованого механічного навантаження та жорсткого 28- і 45-добового обмеження рухливості. Встановлено, що гіпокінезія вірогідно зменшує ПН, особливо у діапазоні навантажень фізіологічного рівня. Розвиток гіпокінетичної остеопенії супроводжується зменшенням імпедансу, активного й реактивного опорів і значним збільшенням мності кістки. Жорстка тривала гіпокінезія зменшує напруження кисню в ненавантажених м'язах і швидкість споживання кисню кістковою тканиною. Використання переривчастої нормобаричної гіпоксії (ПНГ) зменшує порушення кисневого метаболізму та активує анаболічні процеси в кістковому матриксі, що призводить до покращення пасивних електричних властивостей кістки. Найбільший остеопротекторний ефект спостерігався при використанні ПНГ на етап преадаптації і всього періоду обмеження рухливості. Отримані результати про закономірності змін активних і пасивних електричних властивостей кістки в умовах гіпокінезіїі можуть бути використані для розробки нових методів діагностики та корекції патології кісткової системи.

Ключові слова: кістка, гіпокінезія, потенціал навантаження, пасивні електричні властивості.


АННОТАЦИЯ

Левашов О.М. Влияние гипокинезии на биоэлектрические свойства кости. – Рукопись. Диссертация на соискание ученой степени кандидата медицинских наук по специальности 14.03.04 – патологическая физиология. Институт физиологии им. А.А. Богомольца НАН Украины, Киев, 2008.

В диссертации приводятся результаты исследований влияния низкой функциональной нагрузки на биоэлектрические свойства кости, полученные методом отведения потенциала с поверхности бедренной кости и мультичастотного импедансометрического тестирования препаратов диафизарной части бедренной кости крыс линии Вистар в условиях дозированной механической нагрузки и жесткой 28- и 45-суточной гипокинезии. Получены новые данные о закономерностях изменений активных и пассивных электрических свойств кости в условиях низкой функциональной нагрузки, которые могут быть использованы для разработки неинвазивных методов диагностики и коррекции патологии костной системы. Установлено, что при ступенчатом увеличении механической нагрузки на кость, величина электрического потенциала, возникающего на поверхности кости в области ее максимальной деформации, возрастает в экспоненциальной зависимости. Наибольший прирост величины потенциала на единицу нагрузки имеет место при нагрузках физиологического уровня. В условиях стереотипной функциональной нагрузки межиндивидуальные вариации потенциала нагрузки бедренной кости крыс в значительной степени определяются возрастными изменениями состава и структуры костной ткани. Величина ПН у крыс пубертатного возраста на порядок меньше, чем у взрослых крыс. У крыс, вступивших в период старческой инволюции, ПН начинает вновь уменьшаться. Амплитуда и величина ПН, приходящаяся на единицу нагрузки, у крыс, находившихся в условиях жесткой 28-суточной гипокинезии, были на 20-25% меньше, чем у контрольных животных. Эти различия были наиболее отчетливо выражены при загрузках, достигавших 30% и 50% от массы тела крысы. Снижение эффективности биоэлектрической регуляции физиологической перестройки костной ткани может быть одной из причин низкой эффективности физических нагрузок при развитии возрастной остеопении и замедленного восстановления костной ткани в периоде последействия гипокинезии. Результаты мультичастотного импедансометрического тестирования показали, что пассивные электрические свойства компактной кости половозрелой крысы в условиях стереотипной функциональной нагрузки имели выраженную зависимость от частоты тестирующего тока. Максимальные значения реактивного сопротивления, а следовательно, и степени поляризации костной ткани, регистрировались на частоте 10000 Гц. Анализ результатов исследований показал наличие достоверной прямой корреляционной связи электрической емкости с содержанием воды (r=+0,858) и органических веществ (r=+0,485), а также импеданса, активного и реактивного сопротивления с содержанием минеральных веществ (r=+0,766; r=+0,765; r=+0,893). Установлено, что пассивные электрические свойства бедренной кости крыс в различные периоды постнатального развития определяются особенностями возрастной динамики ее состава и структуры.

Наиболее существенные изменения пассивных электрических свойств кости крыс происходят в периоды пубертации (1-3 мес) и инволюции (старше 18 мес), т.е. в периоды наиболее выраженных изменений массы, линейных размеров, степени минерализации и гидратации кости. Жесткая 28- и 45-суточная гипокинезия приводила к уменьшению массы, минеральной плотности и увеличению степени гидратации кости. Развернутая картина гипокинетической остеопении характеризовалась уменьшением импеданса, активного и реактивного сопротивления и значительным увеличением емкости кости. Установлено, что критическим этапом в изменении пассивных электрических свойств кости при низкой функциональной нагрузке является повышение гидратации костной ткани, что приводит к значительному увеличению ее электропроводности. Наличие тесной обратной корреляционной связи между содержанием воды и минералов в костной ткани (r=-0,890) позволяет использовать показатель гидратации в качестве дополнительного критерия степени ее деминерализации. Жесткая 28-суточная гипокинезия уменьшала напряжение кислорода в ненагруженных мышцах и снижала скорость потребления кислорода костной тканью. Использование прерывистой нормобарической гипоксии на протяжении периода ограничения подвижности уменьшало выраженность нарушений кислородного метаболизма, что приводило к активации анаболических процессов и увеличению содержания в костном матриксе органических веществ. Прерывистая нормобарическая гипоксия уменьшала проявления остеопении и нарушений пассивных электрических свойств кости в условиях жесткой гипокинезии. Максимальный остеопротекторный эффект наблюдается при использовании прерывистой нормобарической гипоксии на этапе преадаптации и периода ограничения подвижности.

Ключевые слова: кость, гипокинезия, потенциал нагрузки, пассивные электрические свойства.


ANNOTATION

Levashov O.M. Effects of hypokinesia on bone bioelectrical properties. - Manuscript. Dissertation on the candidate of medical sciences degree competition on the specialty 14.03.04 - pathological physiology. - O.O. Bogomoletz Institute of Physiology of the National Academy of Science of Ukraine, Kyiv, 2008.  The dissertation is devoted to studying of the bone bioelectric properties at the different loading and dosed hypokinesia. The methods of stress generated potential (SGP) taking from the fresh femur bone surface and bone multi-frequency bioelectrical impedance measurements were used in 233 mail Vistar rats. It was set that hard limitation of mobility during 28- and 45-day's for certain diminished of the SGP amplitude especially in the range of physiology level loadings. It was exposed, that hard hypokinesia decreased bone mass and mineral content in bone tissue. The mean of bone hydratation increased. Hypokinetic osteopenia is accompanied with the diminishing of impedance, active and reactive resistances value and considerable increase of bone electrical capacity. The oxygen tension in unloaded muscles and bone oxygen consumption diminished too. The intermittent normobaric hypoxia (INH) prevented of the oxygen metabolism disturbances and activated the anabolic processes in bone tissue. The bone passive electrical properties were improved too. The maximal osteoprotection effect was got in experiments when INH was used for 14 days of preadaptation period and for all period of hypokinesia. The results of this study may be used for development of new noninvasive diagnostic and correction methods of the bone system pathology.

Keywords: bone, hypokinesia, stress generated potential, passive electric properties.


Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.