скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Наукові основи підвищення ефективності гальмування поліпшенням умов взаємодії коліс з гальмівними колодками і рейками

Практична цінність роботи підтверджена актами впровадження отриманих результатів «ХК «Луганськтепловоз» і ВАТ «ЛуганськПТІмаш» при створенні тепловоза ТЕП 150, у процесі проектування і розробки тепловозів, дизель - і електропоїздів ДПЛ-2, ДЕЛ-02, ЕПЛ 9Т, трамвайних вагонів. Економічний ефект від впровадження результатів наукової роботи наразі уточнюється в процесі дослідної експлуатації виробів з нових матеріалів на рухомому складі.

Основні науков результати дисертаційної роботи використовуються в науково-дослідній робот навчальному процесі при підготовці бакалаврів, фахівців, магістрів і аспірантів за фахом «Рухомий склад і спеціальна техніка залізничного транспорту» Східноукраїнського національного університету імені Володимира Даля.


СПИСОК РОБІТ, ОПУБЛІКОВАНИХ АВТОРОМ

1. Старченко В.Н. Некоторые вопросы теории контактного взаимодействия колеса и рельса / СНУ ім. В. Даля. Луганськ: 2006. – 120 с. – Библиогр.: С. 112–117.

2. Старченко В.Н., Бурка М.Л., Сидоров Н.П. Особенности характеристик сдвига резинометаллических опор кузова тепловоза // Конструирование и производство транспортных машин: Респ. межвед. научн.-техн. сб. Вып. 21. – Харьков: Вища щкола. 1989. – С. 41– 45.

3. Старченко В.Н., Шевченко С.И., Хухлей С.К. Новые конструкции тормозов транспортных машин // Вестник Восточноукраинского государственного университета, отдельный выпуск. Транспорт. Луганськ, 1996. – С. 19–23.

4. Старченко В.Н., Шевченко С.И., Белоус В.В. К вопросу исследования тормозных устройств с колодками плавающего типа // Cер. Транспорт: Зб. наук. праць СУДУ, юбил. выпуск. – Луганськ, 1998. – С. 73–80.

5. Старченко В.Н., Шевченко С.И., Белоус В.В. О возможности применения аналого-цифровых преобразователей при экспериментальных исследованиях // Вісник СУДУ. – Луганськ, 2000. – №6 (28). – C. 36-40.

6. Старченко В.Н. К вопросу о трении и сцеплении при взаимодействии колеса с рельсом // Вісн. Східноукр. нац. ун-ту. Луганськ, 2003. – №9 (67). – С. 129-135.

7. Старченко В.Н. Трение и сцепление при взаимодействии колеса с рельсом в процессе торможения // Сборник научных трудов НГУ. – Днепропетровск. Национальный горный университет, 2004. – Т. 4, №19. - С. 100-108.

8. Старченко В.Н., Полупан Е.В., Шевченко С.И. Повышение эффективности торможения использованием новых углерод-композиционных материалов // Вісн. Східноукр. нац. ун-ту ім. В. Даля. Луганськ, 2004. – №7[77]. Частина1. С. 137-142.

9. Старченко В.Н., Шевченко С.И., Полупан Е.В. Исследование влияния характера нарастания тормозного момента на динамические нагрузки механизмов машин // Вісн. Східноукр. нац. ун-ту ім. В. Даля. – Луганськ, 2004. – №7 (77). Частина 2. – С. 48-52.

10. Старченко В.Н. Динамическая контактная задача об угловых колебаниях жёсткого колеса на рельсе (часть 1) // Вісн. Східноукр. нац. ун-ту ім. В. Даля. – Луганськ, 2004. -№8 (78), Частина 1. – С. 24-28.

11. Старченко В.Н. Динамическая контактная задача об угловых колебаниях жёсткого колеса на рельсе (часть 2, окончание) // Вісн. Східноукр. нац. ун-ту ім. В. Даля. – Луганськ, 2004. - №8 (78), Частина 1. – С. 29-32.

12. Старченко В.Н., Полупан Е.В. Анализ влияния температуры трения на надёжность и долговечность работы тормозного устройства // Подъёмно-транспортная техника, № 1(9). – 2004. С. 49-53.

13. Старченко В.М., Поляков В.М. Випробування нових фрикційних матеріалів для гальмування транспортних засобів // Вісник Національного транспортного університету. – К.: НТУ, 2004. – Випуск 9. – С. 283-287.

14. Старченко В.Н., Гурин В.А., Полупан Е.В., Гурин И.В. Триботехнические характеристики новых фрикционных материалов // Вісн. Східноукр. нац. ун-ту ім. В. Даля. – Луганськ, 2005. – №8[90]. Частина1. - С. 121-126.

15. Старченко В.Н. Расчёт упругих характеристик пространственно армированных фрикционных углерод-углеродных композиционных материалов // Автомобильный транспорт: Сборник научных трудов. Харьков: ХНАДУ. – 2005. – Вып. 16. – С. 117-122.

16. Старченко В.Н., Буряк В.Г. Пространственная динамическая смешанная задача о сдвиге упругого полупространства // Вісн. Східноукр. нац. ун-ту ім. В. Даля. - Луганськ, 2005. - №6 (88). - С. 51-56.

17. Старченко В.Н., Буряк В.Г. Динамическая контактная задача о взаимодействии колеса с рельсом // Вісник ДНУЗТ ім. акад. В. Лазаряна.– Д.: Дніпропетр. нац. ун-т залізн. транспорту. - 2005. – Вип. 8. - С. 170-175.

18. Старченко В.Н., Буряк В.Г. Динамічна контактна задача руху колеса по пружному шару // Управління проектами, системний аналіз логістика. – К.: НТУ. – 2005. – Вип.2. - С. 121-124.

19. Старченко В.Н. Пространственная динамическая контактная задача для упругого полупространства // Збірник наукових праць НГУ. - Дніпропетровськ: Національний гірничий університет. - 2005.– №21.- С. 21-28.

20. Старченко В.Н. Антифрикционные полимерные материалы для опорных устройств подвижного состава железных дорог // Наука, техника и высшее образование. Сб. научн. тр., Вып. 2. Изд-во Ростовского университета. - 2006. - С. 57-58.

21. Старченко В.Н., Гурин В.А., Быкадоров В.П., Шапран Е.Н. Фрикционные материалы на базе углерод-углеродных и углерод-асбестовых волокон для тормозных устройств // Железные дороги мира - 2006. –№ 2. - С. 38-42.

22. Старченко В.Н. Расчёт упругих характеристик фрикционных углеродных композитов для подвижного состава // Вісник ДНУЗТ ім. В. Лазаряна. – Д.: ДНУЗТ. - 2006. Вип. 11. - С. 160-166.

23. Басов Г.Г., Старченко В.Н., Чесноков В.В., Нестеренко В.И., Бурка М.Л., Паранич А.А. Экспериментальные исследования новых материалов для опорно-возвращающих устройств подвижного состава // Збірник наукових праць НГУ. Дніпропетровськ: Національний гірничий університет. – 2006. – № 24. – С. 105-110.

24. Старченко В.Н., Полупан Е.В. Исследование теплового состояния фрикционных накладок тормозных устройств транспортных машин // Вісн. Східноукр. нац. ун-ту ім. В. Даля. – Луганськ, 2006. - №7 (101). - С.56-61.

25. Голубенко А.Л., Старченко В.Н. Решение динамической контактной задачи с ограничением при взаимодействии колеса и рельса // Вісн. Східноукр. нац. ун-ту ім. В. Даля. – Луганськ, 2006. - №8 (102), Частина 1. - С. 19-25.

26. Голубенко А.Л., Старченко В.Н., Гурин И.В. Фрикционные углерод-углеродные композиты для тормозных устройств подвижного состава // Вісн. Східноукр. нац. ун-ту. – Луганск, 2006. - №8 (102), Частина 2. - С. 256-261.

27. Старченко В.Н. Трибологические свойства фрикционных С-С композитов для тормозных устройств подвижного состава // Вісн. Східноукр. нац. ун-ту. – Луганськ, 2007. - № 6 (112). - С. 48-52.

28. Старченко В.Н. Контактные напряжения при динамическом взаимодействии колеса с рельсом // Вісн. Східноукр. нац. ун-ту. – Луганськ, 2007. - № 8 (114), Частина 1. - С. 59-63.

29. Старченко В.Н. Исследование теплофизических параметров фрикционных С-С композитов // Вісн. Східноукр. нац. ун-ту. – Луганськ, 2007. - № 8 (114), Частина 2. - С. 226-229.

30. Упругое колесо рельсового транспортного средства: А.с. 1659232. СССР. МКИ В60В 9/12 / Старченко В.Н., Бучный А.И. (SU). – № 4333909/11; Заявл. 15.10.87; Опубл. 30.06.91, Бюл. №24. – 5 с.

31. Двосекційна гальмова колодка: Патент на корисну модель 17933. Україна. МПК (2006) F16D 65/04 / Старченко В.М., Шевченко С.І., Полупан Є.В. (UA). № u 2006 04585; Заявл. 25.04.06; Опубл. 16.10.06, Бюл. №10. - 2 с.

32. Композитний матеріал на основ вуглець-вуглець для фрикційних елементів: Патент на винахід №82267. Україна. МПК С04В 35/83, С04В 35/52, F16D 69/00/ Старченко В.М., Полупан Є.В., Шевченко С.І. (UA). Заявл. 03.05.2006; Опубл. 25.03.08, Бюл. №6. – 4 с.

33. Старченко В.Н. Динамическая контактная задача о вертикальных колебаниях жёсткого колеса на упругом изотропном рельсе // Вісн. Східноукр. нац. ун-ту ім. В. Даля. – Луганськ, 2005. – №8 (90). Частина 1. – С. 94-98.

34. Старченко В.М., Буряк В.Г. Динамічна задача про рух клина у пружному шарі // Збірник наукових праць НГУ. Дніпропетровськ: Національний гірничий університет, – 2005. – №21. – С. 16-21.

35. Старченко В.Н. Ограниченное решение динамической контактной задачи о взаимодействии колеса с рельсом // Збірник наук. праць НГУ. Дніпропетровськ. Національний гірничий університет, – 2006. – №24. – С. 110-113.

36. Старченко В.Н., Шевченко С.И. Измерительная система для диагностики и испытания тормозных устройств транспортных машин // Вісн. Східноукр. нац. ун-ту ім. В. Даля. – Луганськ, 2006. – №7 (101). – С. 193-196.

37. Старченко В.Н. Фрикционные углерод-углеродные композитные материалы для дисковых тормозов подвижного состава // Наука, техника и высшее образование: Сб. научн. тр. – Изд-во Ростовского университета. – 2006. – Вып. 2. – С. 57-58.

38. Старченко В.Н., Полупан Е.В. Тепловые процессы при колодочном торможении фрикционными С-С композитами // Вісн. Східноукр. нац. ун-ту. - 2007. - № 6 (112), Частина 2. – С. 227-230.

39. Старченко В.Н., Хухлей С.К., Шевченко С.И. Новое конструктивное решение тормозных устройств транспортных машин // Проблемы развития локомотивостроения: 5-я Межд. научн.-техн. конф., Алушта, октябрь 1995.

40. Старченко В.Н., Шевченко С.И., Хухлей С.К. Установка для диагностирования и испытания тормозных устройств транспортных машин //Автоматизация проектирования и производства изделий в машиностроении: Межд. научн.-практ. конф.,Луганск, 1996.

41. Старченко В.Н., Шевченко С.И., Панфилов Д.А. Новая конструкция тормозной системы транспортных машин // Автоматизация проектирования и производства изделий в машиностроении: Межд. научн.-практ. конф., Луганск, 1996.

42. Старченко В.Н., Шевченко С.И., Хухлей С.К. Автоматизированная обработка экспериментальных данных // Проблемы развития рельсового транспорта: 7-я Межд. научн.-техн. конф., Крым, Ливадия, сентябрь 1997.

43. Старченко В.Н. Трение и сцепление при взаимодействии колеса с рельсом // Проблемы механики железнодорожного транспорта: XI –я Межд. конф., ДНУЗТ им. акад. В. Лазаряна, Днепропетровск. – 2004. – С. 156.

44. Старченко В.Н. Трение и сцепление при взаимодействии колеса с рельсом в процессе торможения // Проблемы механики горно-металлургического комплекса: Межд. научн.-техн. конф., НГУ, Днепропетровск. 2004. – С. 30.

45. Старченко В.Н., Гурин В.А. Фрикционные углерод – композиционные материалы для транспортной техники // Залізничний транспорт України, Спеціальний випуск №3/1. Матеріали Міжнародно науково-практичної конференції «Наука в транспортному вимірі». – К., 2005. – С. 256.

46. Старченко В.Н. Расчёт упругих характеристик углерод-композиционных материалов для транспортной техники // Залізничний транспорт України, Спеціальний випуск №3/1. Матеріали Міжнародно науково-практичної конференції «Наука в транспортному вимірі». – К., 2005. – С. 255.

47. Старченко В.Н. Новые фрикционные углерод-углеродные композиты для тормозных устройств подвижного состава // Проблемы и перспективы развития железнодорожного транспорта: 65-я Межд. научн.-практ. конф., Днепропетровск, ДНУЖТ им. акад. В. Лазаряна, 2005. – С. 77.

48. Старченко В.Н. Расчёт упругих характеристик фрикционных композитов для тормозных устройств подвижного состава // Проблемы и перспективы развития железнодорожного транспорта: 65-я Межд. научн.-практ. конф., Днепропетровск, ДНУЖТ им. акад. В. Лазаряна, 2005. – С. 33-34.

49. Старченко В.Н. Новые антифрикционные материалы для опорных устройств подвижного состава // Проблемы и перспективы развития железнодорожного транспорта: 66-я Межд. научн.-практ. конф., Днепропетровск, ДНУЖТ им. акад. В. Лазаряна, 2006. – С. 103-104.

50. Старченко В.Н. Новые фрикционные материалы для дисковых тормозов подвижного состава // Наука в транспортном измерении: Пассажирские перевозки: 2-я Межд. научн.-практ. конф., Укрзалізниця, Киев, 2006 г. С. 32.

51. Старченко В.Н. Повышение эффективности работы опорно-возвращающих устройств подвижного состава // Наука в транспортном измерении: Пассажирские перевозки: 2-я Межд. научн.- практ. конф., Укрзалізниця, Киев, июнь 2006 г. – С. 33.

52. Старченко В.Н., Кузнецова М.Н. Фрикционные С-С композиты для тормозных устройств подвижного состава // Проблемы и перспективы развития железнодорожного транспорта: 67-я Межд. научн.-практ. конф., Днепропетровск, ДНУЖТ им. акад. В. Лазаряна, 2007.

53. Старченко В.Н. Новые антифрикционные материалы для опорных устройств тележек подвижного состава // Проблемы и перспективы развития железнодорожного транспорта: 67-я Межд. научн.-практ. конф., Днепропетровск, ДНУЖТ им. акад. В. Лазаряна, 2007.

54. Старченко В.Н., Кузнецова М.Н. Исследование теплофизических параметров фрикционных С-С композитов для тормозных устройств транспортных машин // XII –я Межд. конф., ДНУЗТ им. акад. В. Лазаряна, Днепропетровск. – 2008.

55. Старченко В.Н. Повышение эффективности торможения рельсового подвижного состава применением фрикционных С-С композитов // XII –я Межд. конф., ДНУЗТ им. акад. В. Лазаряна, Днепропетровск. – 2008.

56. Упругое зубчатое колесо: А.с. 1456672. СССР. МКИ F16H 55/14, 1/26 / Старченко В.Н., Беляев А.И., Бучный А.И. (SU) 4264646/25-28; Заявл. 17.06.87; Опубл. 07.02.89, Бюл. №5, - 8 с.

57. Тормоз: А.с. 1492850. СССР. МКИ F16D 49/20 / Старченко В.Н. (SU) – №4237166/31-27; Заявл. 11.03.87; Опубл. 07.02.89, Бюл. №5, - 6 с.

58. Тормоз: А.с. 1581925. СССР. МКИ F16D 49/20 / Старченко В.Н. (SU) –№4255264/31-27; Заявл. 01.06.87; Опубл. 30.07.90, Бюл. №28, - 6 с.

59. Самоустанавливающееся зубчатое колесо: А.с. 1698532. СССР. МКИ F16H 1/26, B61C 9/06, F16H 55/14 / Старченко В.Н., Август В.В. (SU) – 4746627/28; Заявл. 09.10.89; Опубл. 15.12.91, Бюл. №46, - 6 с.

60. Колодкове гальмо: Деклараційний патент на корисну модель. 8057. Україна. МПК B66D 5/08, F16D 65/00/ Старченко В.М., Шевченко С.І., Полупан Є.В.(UA) – № u 200500185; Заявл. 10.01.2005; Опубл. 15.07.05, Бюл. №7,-4 с.

61. Колодкове гальмо: Деклараційний патент на корисну модель. 8059. Україна. МПК B66D 5/08, F16D 65/04 / Шевченко С.І., Старченко В.М., Полупан Є.В. (UA) – № u 200500191; Заявл. 10.01.2005; Опубл. 15.07.05, Бюл. №7,-4 с.

62. Фрикційний диск: Патент на корисну модель. 17934. Україна. МПК F16D 65/12, F16D 69/02 / Старченко В.М., Шевченко С.І., Полупан Є.В. (UA) –№ u 2006 04587; Заявл. 25.04.06; Опубл. 16.10.06, Бюл. №10, - 2 с.


АННОТАЦИЯ

Старченко В.Н. Научные основы повышения эффективности торможения улучшением условий взаимодействия колёс с тормозными колодкам и рельсами. – Рукопись.

Диссертация на соискание научной степени доктора технических наук по специальности 05.22.07 – Подвижной состав железных дорог и тяга поездов, Восточноукраинский национальный университет имени Владимира Даля, Луганск, 2008.

В диссертационной работе приведены результаты теоретического обобщения и решения научно-технической проблемы повышения эффективности торможения улучшением условий взаимодействия колёс с тормозными колодками и рельсами путём развития теории и разработки научно обоснованных технических решений, обеспечивающих повышение эффективности работы тормозных и опорно-возвращающих устройств, улучшение характеристик и условий взаимодействия подвижного состава и пути.

Предложена концепция решения динамических контактных задач для системы “колесо – рельс” в двумерной и пространственной постановках с учётом осцилляции ядер интегральных уравнений и принципа предельного поглощения, характеризующего внутреннее трение. Это позволило уточнить зависимости для оценки уровня и характера распределения контактных напряжений и силы сцепления при взаимодействии подвижного состава и пути.

Приведено теоретическое решение динамической контактной задачи о вертикальных колебаниях колеса при взаимодействии с упругим рельсом на основе точной факторизации функций ядра интегрального уравнения, при этом установлены аналитические зависимости для угла сдвига фаз и модуля комплексной амплитуды колебаний колеса.

Усовершенствована пространственная математическая модель движения локомотива с учётом возмущений от воздействия неровностей поверхности катания колеса, установлены доминантные факторы и степень их влияния на уровень силового взаимодействия колеса с рельсом. Показано, что взаимодействие колёс с изношенным профилем поверхности катания с новыми или изношенными рельсами существенно увеличивает горизонтальные поперечные ускорения и перемещения, динамические горизонтальные и рамные силы (на 15…30%).

При движении в кривых участках пути и взаимодействии стандартных профилей колеса и рельса устойчивое влияние на уровень горизонтальных сил в системе “экипаж – путь” оказывает величина момента сопротивления повороту тележки относительно кузова, при этом отмечается рост боковых и рамных сил (до 11…27%). Для улучшения условий взаимодействия в системе “тормозная колодка – колесо – рельс” предложено использовать новые разработанные фрикционные материалы в системе колодочного торможения, которые обеспечивают эффективное торможение и оказывают менее разрушающее воздействие на поверхность катания колёс, а также антифрикционные материалы в опорных устройствах с низким коэффициентом трения для снижения момента сопротивления повороту тележек относительно кузова.

Разработаны теоретические основы расчёта, компонентный состав, способы изготовления и конструктивное исполнение новых тормозных С-С колодок на основе углерод - углеродных волокон с пироуглеродной матрицей и модификаторами трения, которые характеризуются высокими и стабильными эксплуатационными свойствами, а также хорошими теплофизическими показателями в широком температурном диапазоне.

Установлены закономерности влияния на фрикционные характеристики С-С колодок качественного, количественного и фракционного состава различных компонентов, а также влияние на величину и стабильность коэффициента трения давления, скорости скольжения и температуры на контактной поверхности сопряжения. Впервые установлены теплофизические характеристики и закономерности влияния различных компонентов на теплопроводность модифицированных С-С колодок.

Экспериментальными исследованиями установлено, что гибридные С-С колодки с включением сетки из медной проволоки имеют коэффициент теплопроводности в диапазоне 20…48 Вт/(мМК), что позволяет уменьшить температурную напряжённость в контактной зоне “тормозная колодка – колесо” на 20% и более по сравнению с композиционными колодками.

Показано расчётами на математической модели пространственного движения локомотива с составом вагонов и по методике ПТР, что независимо от фрикционных условий в контакте колёс с рельсами для достижения одной и той же величины тормозного пути нажатие на С-С колодки должно быть в два раза меньше, чем для чугунных колодок. Действительный тормозной путь при равном нажатии уменьшается более чем в два раза в сравнении с чугунными и на 8…10% меньше - в сравнении с композиционными колодками.

Путём численного моделирования нестационарного теплового процесса, который сопровождает процесс колодочного торможения рельсового подвижного состава, установлено, что опытные С-С колодки имеют существенные преимущества (до 20 и более процентов) в сравнении с серийными композиционными колодками по всем термическим показателям, в том числе и по теплонапряженности поверхности катания колёс.

Разработаны для использования в опорных устройствах антифрикционные самосмазывающиеся полимерные накладки на основе капролона с наполнителями в виде минерального масла, дисульфид молибдена и чешуйчатого графита, которые характеризуются низким и стабильным коэффициентом трения, что способствует улучшению условий взаимодействия колеса и рельса за счёт снижения момента сопротивления повороту тележек относительно кузова.

Теоретические положения и разработанные математические модели, на основании которых приняты технические решения, адекватны реальным процессам в системе “тормозная колодка – колесо рельс”, что подтверждено комплексными экспериментальными исследованиями.

Научно-практические результаты работы являются основой повышения эффективности торможения и улучшения условий взаимодействия подвижного состава и пути, а также уменьшения интенсивности изнашивания элементов системы “тормозная колодка – колесо рельс” и повышения срока их службы.

Ключевые слова: взаимодействие подвижного состава и пути, контактные напряжения, моделирование, фрикционные материалы, С-С колодки, торможение, коэффициент трения, износ, тепловые процессы, температура, срок службы.


АНОТАЦІЯ

Старченко В.М. Наукові основи підвищення ефективності гальмування поліпшенням умов взаємодії коліс з гальмівними колодками і рейками. – Рукопис.

Дисертація на здобуття наукового ступеня доктора технічних наук за фахом 05.22.07 – Рухомий склад залізниць і тяга поїздів, Східноукраїнський національний університет мені Володимира Даля, Луганськ, 2008.

У дисертаційній роботі наведено результати теоретичного узагальнення і вирішення науково-технічної проблеми підвищення ефективності гальмування поліпшенням умов взаємодії коліс з гальмівними колодками і рейками завдяки розвитку теор використання нових науково обґрунтованих технічних рішень, що забезпечують підвищення ефективності роботи гальмівних та опорно-повертальних пристроїв, зниження інтенсивності зношування елементів системи «гальмівна колодка-колесо-рейка» і підвищення терміну служби.

Запропоновано концепцію і методи вирішення динамічних контактних задач для системи “колесо рейка” в двовимірній і просторовій постановках з урахуванням осциляції ядер нтегральних рівнянь і принципу граничного поглинання, який характеризу внутрішнє тертя, що дозволило уточнити залежності для оцінки рівня і характеру розподілу контактного напруження, а також величини сили зчеплення при взаємод рухомого складу і колії.

Розроблено нов гальмівні С-С колодки на основі вуглець - вуглецевих волокон з піровуглецевою матрицею і модифікаторами тертя для гальмівних пристроїв рухомого складу, а також антифрикційні самозмащувальні матеріали на основі капролону з наповнювачами у виді мінерального масла, дисульфіду молібдену і лускатого графіту для опорних пристроїв, котрі сприяють поліпшенню умов взаємодії в систем гальмівна колодка-колесо-рейка”.

Шляхом чисельного моделювання нестаціонарного теплового процесу, що супроводжує процес колодкового гальмування рейкового рухомого складу, встановлено, що дослідні С-С колодки мають істотні переваги (до 20 і більше відсотків) у порівнянні із серійними композиційними колодками з усіх термічних показників, зокрема, щодо теплонапруженості поверхні тертя.

Теоретичн положення і розроблені математичні моделі, на підставі яких створено технічн рішення, адекватні реальним процесам в системі “гальмівна колодка – колесо рейка”, що підтверджено комплексними експериментальними дослідженнями.

Ключові слова: взаємодія рухомого складу і колії, контактне напруження, моделювання, фрикційн матеріали, С-С колодки, гальмування, коефіцієнт тертя, зношення, температура, теплові процеси, термін служби.


THE SUMMARY

Starchenko V.N. Scientific bases of increase of efficiency of braking by improvement of conditions of interaction of wheels with brake block and rails. – Manuscript.

The dissertation on competition for the degree Doctor of technical Sciences on the speciality 05.22.07 – the rolling stock of railways and traction of trains. East Ukrainian National University named after V. Dal, Lugansk, 2008.

In dissertational work results of theoretical generalization and the decision of a scientific and technical problem of development of the theory and improvement of conditions of interaction of system brake block – a wheel – a rail are resulted by use of the new scientifically-grounded technical decisions providing increase of an overall performance of brake devices, decrease of intensity of wear process of elements of system and increase of term of their service.

The concept of the decision of dynamic contact problems about interaction of a wheel and a rail with the account oscillation nucleus of the integrated equations and a principle of the limiting absorption describing internal friction that has allowed to specify contact pressure and forces of coupling at spatial modeling movement of the locomotive is offered, and also to establish possible ways of perfection bogie crews.

Perfection of crews by use of frictional materials on basis C-C composites in brake systems and antifrictional self-lubricated materials on a basis caprolon in basic devices, is a basis of the decision of a problem of improvement of conditions of interaction in system “brake block – a wheel – a rail”, increases of efficiency of braking, reduction of intensity of wear process of elements of system and increase of term of their service. Theoretical positions and the developed mathematical models on the basis of which technical decisions are accepted, are completely adequate to real processes in system brake block – a wheel – a rail that is confirmed with complex experimental researches.

Keywords: interaction of a rolling stock and way, contact pressure, modeling, frictional materials, C-C composites, braking, deterioration, thermal processes, temperature, service life.


Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.