скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Исследование функций

                       max                                                 min

То есть функция  возрастает на интервалах (–¥; –1) и (1; +¥), убывает на интервалах (–1; 0), (0; 1), имеет локальный максимум в точке

х1 = –1, равный уmax (–1) = –2; имеет локальный минимум в точке х2 = 1,

уmin (1) = 2.

Теорема 2 (второе достаточное условие экстремума). Пусть функция f (x) дважды непрерывно-дифференцируема. Если х0 стационарная точка

(f ' (х0) = 0), в которой f '' (х0) > 0, то в точке х0 функция имеет локальный минимум. Если же f '' (х0) < 0, то в точке х0 функция имеет локальный максимум.

Доказательство. Пусть для определенности f '' (х0) > 0. Тогда

Следовательно:

при х < х0, f ' (х) < 0,

при х > х0, f ' (х) > 0.

Поэтому по теореме 1 в точке х0 функция имеет локальный минимум.

Теорема доказана.

Пример 3. Исследовать на экстремум функцию  с помощью второй производной.

Решение. В примере 2 для данной функции мы нашли первую производную  и стационарные точки х1 = –1, х2 = 1.

Найдем вторую производную данной функции:

Найдем значения второй производной в стационарных точках.

 Þ в точке х1 = –1 функция имеет локальный максимум;

 Þ в точке х2 = 1 функция имеет локальный минимум (по теореме 2).

Заметим, что теорема 1 более универсальна. Теорема 2 позволяет проанализировать на экстремум лишь точки, в которых первая производная равна нулю, в то время как теорема 1 рассматривает три случая: равенство производной нулю, производная не существует, равна бесконечности в подозрительных на экстремум точках.

2.2 Исследование функций на выпуклость и вогнутость. Точка перегиба

Пусть функция f (х) задана на интервале (a, b) и х1, х2 – любые различные точки этого интервала. Через точки А (х1, f (х1)) и В (х2, f (х2)) графика функции f (х) проведем прямую, отрезок АВ которой называется хордой. Уравнение этой прямой запишем в виде у = у(х).

Функция f (х) называется выпуклой вниз на интервале (a, b), если для любых точек х1, х2 Î (a, b), а £ х1 < х2 £ b, хорда АВ лежит не ниже графика этой функции, т. е. если f (х) £ у (х), œ х Î [х1, х2] Ì (a, b):


Заметим, что выпуклую вниз функцию иногда называют вогнутой функцией. Аналогично определяется выпуклость функции вверх.

Функция f (х) называется выпуклой вверх на интервале (a, b), если для любых точек х1, х2 Î (a, b), а £ х1 < х2 £ b, хорда АВ лежит не выше графика этой функции, т. е. если f (х) ³ у (х), œ х Î [х1, х2] Ì (a, b):

Теорема 3 (достаточное условие выпуклости). Если f (х) – дважды непрерывно дифференцируема на интервале (a, b) и

1) f ''(х) > 0, œ х Î (a, b), то на (a, b) функция f (х) выпукла вниз;

2) f ''(х) < 0, œ х Î (a, b), то на (a, b) функция f (х) выпукла вверх.

Точка х0 называется точкой перегиба функции f (х), если $ d – окрест-ность точки х0, что для всех х Î (х0 – d, х0) график функции находится с одной стороны касательной, а для всех х Î (х0, х0 + d) – с другой стороны каса-тельной, проведенной к графику функции f (х) в точке х0, то есть точка х0 – точка перегиба функции f (х), если при переходе через точку х0 функция f (х) меняет характер выпуклости:


 х0 – d х0 х0 + d

Теорема 4 (необходимое условие существования точки перегиба). Если функция f (х) имеет непрерывную в точке х0 производную f '' и х0 – точка перегиба, то f '' (х0) = 0.

Доказательство.

Если бы f '' (х0) < 0 или f '' (х0) > 0, то по теореме 3 в точке х0 функция f (х) была бы выпукла вверх или вниз. Следовательно, f ''(х0) = 0.

Теорема доказана.

Теорема 5 (достаточное условие перегиба). Если функция f (х) дважды непрерывно дифференцируема в окрестности точки х0 и при переходе через точку х0 производная f ''(х) меняет знак, то точка х0 является точкой перегиба функции f (х).

Подпись:

Пример 4. Исследовать на выпуклость и найти точки перегиба функции у = х3.

Решение. у' = 3х2, у'' = 6х = 0 Þ х0 = 0 – точка, подозрительная на перегиб.

В точке х0 = 0 функция у = х3 имеет перегиб:

х (–¥; 0) 0 (0; +¥)
у'' 0 +
у выпукла вверх 0 выпукла вниз
точка перегиба

Пример 5. Исследовать на выпуклость и найти точки перегиба функции .

Решение. В примере 3 мы уже находили вторую производную данной функции . Так как  то точек подозрительных на перегиб нет. Рассмотрим промежутки выпуклости:

х (–¥; 0) 0 (0; +¥)
у'' +
у выпукла вверх выпукла вниз
функция не определена

2.3 Асимптоты графика функции

Асимптотой будем называть прямую, к которой график функции неограниченно близко приближается. Различают вертикальные и наклонные асимптоты.

Прямая х = х0 называется вертикальной асимптотой графика функции f (х), если хотя бы один из пределов f (х0 – 0) или f (х0 + 0) равен бесконечности.

Пример 6. Найти вертикальные асимптоты функций:


а)  б)  в)

Решение. Вертикальными асимптотами функций будут прямые х = х0, где х0 – точки, в которых функция не определена.

а) х = 3 – вертикальная асимптота функции . Действительно, ;

б) х = 2, х = – 4 вертикальные асимптоты функции . Действительно,

,

 ;

в) х = 0 – вертикальная асимптота функции  Действительно, .

Прямая у = kx + b называется наклонной асимптотой графика непрерывной функции f (х) при х ® +¥ или х ® – ¥, если f (х) = kx + b + α(х), , то есть если наклонная асимптота для графика функции f (х) существует, то разность ординат функции f (х) и прямой у = kx + b в точке х стремится к 0 при х ® +¥ или при х ® – ¥.

Теорема 6. Для того чтобы прямая у = kx + b являлась наклонной асимптотой графика функции f (х) при х ® +¥ или х ® – ¥, необходимо и достаточно существование конечных пределов:


 (4)

Следовательно, если хотя бы один из данных пределов не существует или равен бесконечности, то функция не имеет наклонных асимптот.

Пример 7. Найти наклонные асимптоты функции

Решение. Найдем пределы (4):

Следовательно, k = 1.

Следовательно, b = 0.

Таким образом, функция  имеет наклонную асимптоту

у = kx + b = 1 · х + 0 = х.

Ответ: у = х – наклонная асимптота.

Пример 8. Найти асимптоты функции .

Решение.

а) функция неопределенна в точках х1 = –1, х2 = 1. Следовательно, прямые х1 = –1, х2 = 1 – вертикальные асимптоты данной функции.

Действительно, .


;

б) у = kx + b.

Следовательно, у = 2х + 1 наклонная асимптота данной функции.

Ответ: х1 = –1, х2 = 1 – вертикальные, у = 2х + 1 – наклонная асимп-

тоты.

2.4 Общая схема построения графика функции

1. Находим область определения функции.

2. Исследуем функцию на периодичность, четность или нечетность.

3. Исследуем функцию на монотонность и экстремум.

4. Находим промежутки выпуклости и точки перегиба.

5. Находим асимптоты графика функции.

6. Находим точки пересечения графика функции с осями координат.

7. Строим график.

Прежде чем перейти к примерам, напомним определения четности и нечетности функции.

Функция у = f (х) называется четной, если для любого значения х, взятого из области определения функции, значение (–х) также принад-лежит области определения и выполняется равенство f (х) = f (–х). График четной функции симметричен относительно оси ординат.

Функция у = f (х) называется нечетной для любого значения х, взятого из области определения функции, значение (–х) также принадлежит об-ласти определения, и выполняется равенство f (–х) = –f (х). График не-четной функции симметричен относительно начала координат.

Пример 9. Построить график .

Решение. Мы используем данные, полученные для этой функции в других примерах.

1. D (у) = (–¥; 0) È (0; +¥).

2.  Следовательно, функция нечетная. Ее график будет симметричен относительно начала координат.

3. (см. пример 2). Исследуем функцию на монотонность и экстремум:

х (–¥; –1) –1 (–1; 0) 0 (0; 1) 1 (1; +¥)
у' + 0 0 +
у

–2

2

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.