скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Термодинамический анализ эффективности агрегатов энерготехнологических систем

Определив  формуле (4.26), можно найти температуру продуктов сгорания на выходе из топки как

. (4.30)


5. ТЕПЛОВОЙ БАЛАНС И ТЕПЛОВОЙ КПД КОТЛА-УТИЛИЗАТОРА

5.1 Составляющие теплового баланса

Тепловой баланс котла вытекает из закона сохранения энергии и устанавливает равенство между количеством подведенной  и расходуемой  теплоты. В общем виде он записывается так:

=. (4.31)

Суммарное количество теплоты, внесенной в котел, называется располагаемой теплотой , которая является приходной частью теплового баланса:

=. (4.32)

Располагаемая теплота  включает в себя все виды теплоты, внесенной в котел*:

, (4.33)

где  и   соответственно низшая теплота сгорания и физическая теплота смеси ОГ с ПГ;  – теплота, внесенная в котлоагрегат воздухом при подогреве его вне агрегата посторонним источником энергии (не в воздухоподогревателе котла).

Если принять энтальпию воздуха в окружающей среде за начало отсчета, то теплоту внешнего подогрева воздуха  можно определить по формуле:

, (4.34)

где  и   соответственно энтальпии воздуха на входе в воздухоподогреватель котла после его предварительного подогрева (например, в паровом калорифере) до температуры  и холодного воздуха с температурой . Как было сказано выше в разделе 4.6, температуру принимают равной 60…80 °С. Температура холодного воздуха  принимается обычно равной 30 °С.

Если записать составляющие расходной части равенства (4.31) применительно к рассматриваемому котлу-утилизатору, то в развернутом виде уравнение теплового баланса котла будет иметь вид:

, (4.35)

где  – полезно использованная теплота (израсходованная на выработку технологической или энергетической продукции, например, на нагрев воды или получение пара заданных параметров); , ,  – потери теплоты соответственно с уходящими газами (продуктами сгорания), химической неполнотой сгорания смеси ОГ с ПГ и от наружного охлаждения (в окружающую среду через ограждения котла).

Уравнение теплового баланса можно записать в виде, где все составляющие выражены в процентах по отношению к располагаемой теплоте, принимаемой за 100 % ( = 100%):

, (4.36)

где  и т. д.

5.2 Коэффициент использования теплоты

Энергетическая эффективность котла-утилизатора характеризуется коэффициентом использования теплоты, или коэффициентом полезного действия h, %:

. (4.37)

Среднестатистические данные по тепловым потерям  и  приводятся в таблице исходных данных к настоящей работе. Потеря теплоты с уходящими из котла газами (продуктами сгорания) , %, определяется по формуле

, (4.38)

где   энтальпия продуктов сгорания при температуре уходящих газов ;  – коэффициент избытка воздуха в уходящих газах (в данном случае коэффициент избытка воздуха по газоходам котла не меняется, то есть );  – энтальпия теоретически необходимого количества воздуха при температуре холодного воздуха . Температура уходящих газов для котлов подобного типа принимается равной 180 … 190 °С.

6. ПАРОПРОИЗВОДИТЕЛЬНОСТЬ КОТЛА

Одним из основных параметров котельного агрегата является его номинальная паропроизводительность , т. е. наибольшая паропроизводительность, которую котел должен обеспечивать в течение длительной эксплуатации при номинальных величинах параметров пара и питательной воды.

Однако при изменении количества, состава и температуры отходящих из технологической установки газов, изменении параметров вырабатываемого пара, а также конструкции поверхностей нагрева действительная паропроизводительность может отличаться от номинальной, вследствие чего она подлежит определению в поверочном тепловом расчете.

Паропроизводительность котла-утилизатора, в котором нет отбора к потребителям насыщенного пара и в котором отсутствует вторичный пароперегреватель, определяется по формуле:

, (4.39)

где  – расход смеси ОГ с ПГ;  – располагаемая теплота; h коэффициент использования теплоты, %; , ,  – энтальпии соответственно перегретого пара, питательной воды и кипящей (продувочной) воды в барабане парового котла;  – коэффициент, учитывающий расход кипящей воды на непрерывную продувку* котла. Величина этого коэффициента , где  – расход продувочной воды, и составляет обычно 0,015 … 0,05. Температура питательной воды составляет 140 150 °С.

7. ЭКСЕРГЕТИЧЕСКИЙ АНАЛИЗ ЭФФЕКТИВНОСТИ КОТЛА-УТИЛИЗАТОРА

В последние годы в практике инженерных расчетов для оценки степени термодинамического совершенства энерготехнологических систем, теплотехнических установок и их элементов все шире используется эксергетический анализ. В его основе лежит понятие эксергии, под которой понимают максимальную работу термодинамической системы при обратимом переходе ее в состояние равновесия с окружающей средой. Эксергетический метод термодинамического анализа позволяет оценить:

качество (потенциал) энергии с точки зрения ее работоспособности, в частности, располагаемые резервы утилизации вторичных энергоресурсов (отходящих газов какого-либо производства, горячей воды и пара, отработавших в технологических и силовых установках, и др.);

снижение качества (“деградацию”) энергии из-за необратимого протекания реальных процессов (горения, теплообмена, смешения, трения и т.д.)

В зависимости от вида термодинамической системы и энергии, которая преобразуется в работу, различают несколько видов эксергии. При анализе эффективности котла-утилизатора целесообразно использовать понятия эксергии потока вещества и химической эксергии.


7.1 Виды эксергии, используемые при анализе эффективности котла-утилизатора

7.1.1 Эксергия потока вещества

Эксергия потока вещества характеризует максимальную располагаемую работу, совершаемую потоком в процессе обратимого перехода из состояния, характеризуемого параметрами , , в состояние с параметрами окружающей среды , . Величина удельной (для единицы массового расхода) эксергии потока вещества определяется по формуле

, (7.1)

где ,  – удельные значения энтальпии и энтропии вещества в состоянии, характеризуемом параметрами , ; ,  – значения указанных величин в состоянии равновесия с окружающей средой.

Уравнение (7.1) отражает единственно возможный путь обратимого перехода вещества из состояния ,  к состоянию , , обеспечивающий достижение : сначала обратимый адиабатный процесс до момента, когда температура становится равной , а затем изотермический процесс при . Указанная последовательность процессов позволяет избежать потерь из-за внутренней и внешней необратимости, связанной с теплообменом при конечной разности температур.

В частном случае, когда давление в потоке близко к давлению окружающей среды , а вещество близко по свойствам к идеальному газу, расчет разностей  и  можно выполнить на основе средних удельных теплоемкостей, выраженных эмпирическими уравнениями типа . При этом расчетные формулы для однородного вещества имеют вид:

, (7.2)

, (7.3)

где   среднелогарифмическая температура в интервале от до :

. (7.4)

К такому именно случаю можно отнести движение воздуха и продуктов сгорания в газоходах котельной установки.

Поскольку, как уже отмечалось ранее, расчеты котельной установки принято вести по отношению к единице количества топлива, отходящих газов или их смеси, соответственно будем иметь:

, (7.5)

, (7.6)

. (7.7)

Следует указать также на возможность приближенного вычисления эксергии потока вещества для указанного частного случая р1» р0 по формуле

. (7.8)

Установлено, что погрешность при использовании этой формулы в диапазоне температур Т = 273–2500 К составляет <3%, что допустимо для таких расчетов.

7.1.2 Химическая эксергия

Химическая (нулевая) эксергия  – это та максимальная работа, которая может быть получена в результате преобразования какого-либо вещества, т. е. определенного соединения химических элементов, в другие соединения этих элементов, наиболее распространенные в окружающей среде и находящиеся с ней в равновесии. Такое преобразование должно осуществляться в ходе обратимой химической реакции при ,  с участием дополнительных веществ (окислителя, катализатора).

Приближенно можно считать, что химическая эксэргия представляет собою теплоту реакции, взятую с обратным знаком. В частности, для топлива удельное значение ее можно брать примерно равной высшей теплоте сгорания .

Для газообразного топлива, а также горючих отходящих газов:

, (7.9)

где  – низшая теплота сгорания.

7.2 Эксергетический баланс котла-утилизатора

Содержание эксергетического анализа составляют расчеты составляющих эксергетического баланса и эксергетического КПД.

В отличие от баланса энергии, баланс эксергии для любой установки может быть сведен лишь условно, если включить в число его составляющих эксэргию, потерянную в процессах преобразования энергии. Баланс эксергии может быть записан в двух формах, одна из которых имеет вид

, (7.10)

где суммарная эксергия, поступающая в установку с потоками вещества и энергии;  – суммарная эксергия, уходящая из установки; – сумма потерь эксергии в установке.

Суммарная эксергия, поступающая в котел-утилизатор складывается из следующих составляющих:

 , (7.11)

где химическая эксергия смеси отходящих газов с природным; – физическая эксергия потока указанных газов;  – эксергия потока воздуха, поступающего в котел (на входе в воздухоподогреватель);  – эксергия потока питательной воды, поступающей в котел (на входе в экономайзер).

Величина химической эксергии смеси отходящих газов с природным, поступающей за единицу времени в котел-утилизатор, приближенно вычисляется по формуле:

. (7.12)

Физическая эксергия смеси отходящих газов с природным:

. (7.13)

Поскольку природный газ поступает из окружающей среды, его физическая эксергия равна нулю. Тогда

, (7.14)


где

;  – энтальпии отходящих газов, соответственно, при  и .

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.