скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Сенсорные процессы и восприятие у животных

Внутреннее ухо представляет собой лабиринт взаимосвязанных наполненных жидкостью камер и каналов. Оно состоит из двух различных частей: вестибулярного аппарата, который ведает чувством равновесия, и улитки - спирально свернутой трубки, которая служит органом слуха. Внутри улитки проходят три канала: вестибулярная лестница, берущая начало у овального окна; барабанная лестница, которая начинается у круглого окна и другим своим концом соединяется с вестибулярной, и средняя лестница, расположенная между первыми двумя. Среднюю и барабанную лестницы разделяет основная мембрана, на которой находится кортиев орган. Этот орган образован рядами рецепторных клеток с сенсорными волосками на апикальных концах. Волоски упираются в студенистую покровную мембрану. Дендриты сенсорных нейронов заканчиваются на поверхности волосковых клеток, и когда колебания основной мембраны заставляют эти клетки колебаться, деформация волосков вызывает генераторные потенциалы, которые возбуждают сенсорные нервы.

Колебания воздуха улавливаются ушной раковиной и проходят по наружному слуховому проходу, заставляя барабанную перепонку колебаться с той же частотой. Эти колебания передаются через полость среднего уха по трем слуховым косточкам, образующим систему рычагов, которая уменьшает амплитуду колебаний, но увеличивает их силу. Кроме того, колебания крупной барабанной перепонки передаются на овальное окно гораздо меньших размеров; в результате звуковое давление на барабанную пере-

 

Рис. 6. Органы слуха разных типов отвечают на разные свойства звука.

Органы, являющиеся детекторами частиц, обнаруженные у пчел, комаров и некоторых рыб, стимулируются молекулами воздуха, движущимися от области с высоким к области с низким давлением. Органы, реагирующие на разницу в давлении, свойственные млекопитающим, некоторым птицам, рыбам и насекомым, обладают замкнутой камерой с «эталонным» давлением и перепонкой, которая деформируется при изменениях давления в окружающей среде. Органы, реагирующие на градиент давления, имеющиеся у рептилий, амфибий, некоторых птиц, рыб и насекомых, измеряют разницу в давлении между двумя концами трубки посредством находящейся в трубке мембраны. Они максимально реактивны, когда ориентированы вдоль оси распропонку усиливается на овальном окне приблизительно в 22 раза, что улучшает обнаружение слабых звуков.

 

Рис. 7. Схематические изображения уха человека: вверху - общий вид; внизу слева - поперечный разрез улитки: внизу справа - детали кортиева органа.

Движение мембраны овального окна вызывает соответствующее движение жидкости в улитке. При прогибании мембраны внутрь улитки жидкость проталкивается из вестибулярной лестницы в барабанную, отчего мембрана круглого окна выгибается наружу, и давление в улитке снижается. За полный цикл жидкость движется сначала в одну, а затем в другую сторону. Эти движения в улитке происходят с частотой колебаний наружного воздуха. Они вызывают бегущую волну в основной мембране, и, отклоняясь вверх и вниз, она деформирует волосковые клетки, упирающиеся в покровную мембрану.

Эта деформация возбуждает сенсорные нейроны.

 

Рис. 8. Длина волн электромагнитного спектра в метрах; видимая часть спектра в увеличенном масштабе.

Точка максимальной амплитуды колебаний мембраны в улитке меняется с частотой звукового стимула. Еще в 7 г. Гельмгольц, исходя из анатомических соображений, правильно постулировал, что высокочастотные волны фокусируются вблизи основания улитки, а низкочастотные оказывают максимальное действие у ее вершины. Современными представлениями о работе улитки мы обязаны инженеру связи Бекеши, получившему за свои исследования Нобелевскую премию. Он наблюдал за процессами внутри улитки, удалив из нее жидкость и заменив ее суспензией угля и распыленного алюминия. По отражению

вспышек яркого света от этой суспензии он смог наблюдать прохождение волны в основной мембране. Как показали его наблюдения, эта мембрана натянута сильнее у основания, что благоприятствует высокочастотным колебаниям, и слабее у вершины, что благоприятствует низким частотам. Таким образом, определенные частоты колеблют различные участки основной мембраны и каждый участок стимулирует особые рецепторы кортиева органа.

Синапсы нервных волокон, идущих от этих рецепторов, находятся в спиральном ганглии, а аксоны нейронов этого ядра образуют VIII черепномозговой нерв. Каждый из них сигнализирует об определенной частоте звука улитковому ядру головного мозга.

Не у всех позвоночных строение уха одинаково. Так, например, у рыб и китообразных нет наружного уха, а рыбы лишены также барабанной перепонки и среднего уха со слуховыми косточками. Поскольку ткани рыб имеют приблизительно ту же плотность, что и вода, колебания, приходящие к их голове, могут передаваться прямо к внутреннему уху. Впрочем, некоторые рыбы обладают другим механизмом, функционально аналогичным среднему уху: это наполненный газом плавательный пузырь, у которого может быть костная связь с внутренним ухом, значительно улучшающая слуховую способность. У амфибий и рептилий самой наружной частью уха является барабанная перепонка, но у птиц уже имеется внешний канал, ведущий к ней от поверхности тела. У птиц от внутренней поверхности барабанной перепонки идет костный стерженек, соединяющийся со стремечком. У амфибий и рептилий эти косточки составляют часть челюсти, хотя у некоторых видов они играют определенную слуховую роль.

Органы боковой линии у рыб и водных амфибий чувствительны к колебаниям, включая низкочастотные звуки; они состоят из видоизмененных волосковых сенсилл, которые реагируют на ток воды в канале боковой линии или на поверхности тела.


3. Зрение

Зрение основано на обнаружении электромагнитного излучения. Электромагнитный спектр имеет широкий диапазон, и видимая часть составляет лишь очень малую долю.

Энергия электромагнитного излучения обратно пропорциональна длине волны. Длинные волны несут слишком мало энергии, чтобы активировать фотохимические реакции, лежащие в основе фоторецепции. Энергия коротких волн так велика, что они повреждают живую ткань.

Большая часть коротковолнового излучения солнца поглощается озоновым слоем атмосферы: если бы этого не было, жизнь на Земле вряд ли могла возникнуть. Все фотобиологические реакции ограничены узким участком спектра между двумя этими областями.

Фоторецепторные клетки содержат пигмент, который под действием света обесцвечивается. При этом изменяется форма молекул пигмента, причем в отличие от выцветания, с каким мы встречаемся в повседневной жизни, такой процесс обратим. Он ведет к еще не совсем понятным электрическим изменениям в рецепторной мембране.

Фоторецепторные клетки могут быть рассеяны по поверхности тела, как у дождевого червя, однако обычно они образуют скопления. Глаз самого примитивного типа состоит из группы рецепторов, лежащих на дне углубления или ямки в коже. Такой глаз в общих чертах различает направление падаюшего света. Из-за теней, отбрасываемых стенками ямки, свет, падающий сбоку, освещает лишь одну ее часть, а остальная остается сравнительно темной. Такие различия в освещенности могут регистрироваться набором фоторецепторов в основании ямки. образующих зачаточную сетчатку. Глаз моллюска Nautilus с точечным отверстием развился из глаза-ямки, внешние края которого сошлись к центру, а слой фоторецепторов образовал сетчатку. Такой глаз работает точно так же, как фотокамера с точечным отверстием: свет от каждой точки попадает только на очень малую область сетчатки, в результате возникает перевернутое изображение.

Эволюцию глаза можно проследить у ныне живущих моллюсков, как показано на рис. 9. Из глаза Nautilus с точечным отверстием развился глаз с защитным слоем, вероятно, для предохранения от грязи. Внутри глаза образовался примитивный хрусталик, как у улитки Helix. Глаз такого типа обнаружен также у пауков. Встречаются и некоторые его разновидности, например глаз у гребешка Pecten, который имеет инвертированную сетчатку и зеркальную выстилку тапетум.

Глаз каракатицы Sepia очень похож на глаз позвоночных. В нем находятся ресничные мышцы, которые могут менять форму хрусталика, и радужка, регулирующая, как диафрагма, количество падающего на сетчатку света.

Глаза позвоночных, хорошим примером которых служит глаз человека, построены по единому плану, хотя, как будет показано в гл. 13, и у них отмечается некоторая экологическая адаптация. На рис. 10 показан горизонтальный разрез человеческого глаза. Он окружен плотной оболочкой - склерой, прозрачной в передней части глаза, где она называется роговицей. Непосредственно изнутри роговица покрыта черной выстилкой - сосудистой оболочкой, которая снижает пропускающую и отражающую способность боковых частей глаза. Сосудистая оболочка выстлана изнутри светочувствительной сетчаткой, которую мы более детально рассмотрим позднее. Спереди сосудистая оболочка и сетчатка отсутствуют. Здесь находится крупный хрусталик, делящий глаз на переднюю и заднюю камеры, заполненные соответственно водянистой влагой и стекловидным телом. Перед хрусталиком расположена радужка - мышечная диафрагма с отверстием, называемым зрачком. Радужка регулирует размеры зрачка и тем самым количество света, попадающее в глаз. Хрусталик окружен ресничной мышцей, которая изменяет его форму. При сокращении мышцы хрусталик становится более выпуклым, фокусируя на сетчатке изображение предметов, рассматриваемых вблизи. При расслаблении мышцы хрусталик уплощается и в фокус попадают более отдаленные предметы.

У позвоночных в отличие от таких головоногих моллюсков, как каракатица, сетчатка имеет инвертированное, т. е. перевернутое, строение. Фоторецепторы лежат у сосудистой оболочки, и свет попадает на них, пройдя через слой нейронов главным образом ганглиозных и биполярных клеток. Ганглиозные клетки примыкают к стекловидному телу, и их аксоны проходят по внутренней поверхности сетчатки к слепому пятну, где они образуют зрительный нерв и выходят из глаза. Биполярные клетки - это нейроны, соединяющие ганглиозные клетки с фоторецепторами.

Рис. 9. Глаза моллюсков. А. Глаз с точечным отверстием у морского моллюска Nautilus. Б. Заполненный хрусталиком глаз наземной улитки Helix. В. Глаз каракатицы Sepia, сходный с глазом позвоночных. Г. Инвертированный глаз гребешка Pecten.

Рис. Типичные рецепторные механизмы при разных типах цветового зрения.


Фоторецепторы делятся на два типа -палочки и колбочки. Палочки, более вытянутые по сравнению с колбочками, очень чувствительны к слабому освещению и обладают только одним типом фотопигмента - родопсином. Поэтому палочковое зрение бесцветное. Оно также отличается малой разрешающей способностью, поскольку много палочек соединено только с одной ганглиозной клеткой. То, что одно волокно зрительного нерва получает информацию от многих палочек, повышает чувствительность в ущерб остроте. Палочки преобладают у ночных видов, для которых важнее первое свойство.

Рис. 11. Строение сетчатки приматов.


Колбочки наиболее чувствительны к сильному освещению и обеспечивают острое зрение, так как с каждой ганглиозной клеткой связано лишь небольшое их число. Они могут быть разных типов, обладая специализированными фотопигментами, поглощающими свет в различных частях спектра. Таким образом, колбочки служат основой цветового зрения. Они наиболее чувствительны к тем длинам волн, которые сильнее всего поглощаются их фотопигментами. Зрение называют монохроматическим, если активен лишь один фотопигмент, например в сумерках у человека, когда работают только палочки.

Дихроматическим зрение бывает при наличии двух активных фотопигментов, как у серой белки. Каждая длина волны стимулирует оба типа колбочек, но в разной степени в соответствии с их относительной чувствительностью в этой части спектра. Если мозг может распознавать такую разницу, животное различает длину волны света по его интенсивности. Однако эти определенные отношения возбудимости характерны более чем для одной части спектра, поэтому некоторые длины волн воспринимаются одинаково. Это происходит также при особых формах цветовой слепоты у человека. Длина волны, одинаково возбуждающая оба типа колбочек, воспринимается как белый цвет и называется «нейтральной точкой» спектра. Наличие ее показано в поведенческих опытах у серой белки.

Такое смешение меньше выражено в зрительных системах с тремя типами цветовых рецепторов или при трихроматическом зрении, известном у многих видов, в том числе у человека. Однако некоторое смешение происходит и здесь: можно, например, вызвать впечатление любого цвета посредством разных сочетаний трех монохроматических составляющих, специально подобранных по интенсивности и насыщенности. Без этого было бы невозможно зрительное восприятие цветной фотографии и цветного телевидения.

У многих птиц и рептилий обнаружено больше трех типов цветовых рецепторов. Кроме различных фотопигментов, колбочки этих животных часто содержат окрашенные капельки масла, которые действуют как фильтры и в сочетании с фотопигментом определяют спектральную чувствительность рецептора. Эти капельки обычно не распределены по сетчатке равномерно, а сосредоточены в определенных ее частях.

Рис. 13. Пример комбинации пигмента и капельки масла в колбочке глаза птицы.

В 5 г. чешский физиолог Ян Пуркинье заметил, что красные цвета кажутся ярче синих днем, но с наступлением сумерек их окраска блекнет раньше, чем у синих. Как показал в 6 г. Шульц, это изменение спектральной чувствительности глаза, названное сдвигом Пуркинье, объясняется переходом от колбочкового зрения к палочковому во время темновой адаптации. Это изменение чувствительности при темновой адаптации можно измерить у человека, определяя порог обнаружения едва видимого света через разные промежутки времени пребывания в темной комнате, По мере адаптации этот порог постепенно снижается, как показано на рис. 14. Перегиб кривой обусловлен переходом от колбочкового зрения к палочковому. Долю колбочкового зрения можно определить, направляя очень слабый свет на центральную ямку на сетчатке, в которой палочки отсутствуют. Долю участия в восприятии палочек определяют у «палочковых монохроматов», т. е. у редких индивидуумов, лишенных колбочек. Как можно видеть на рис. 14. палочки гораздо чувствительнее к свету, чем колбочки, но содержат только один фотопигмент - родопсин, максимальная чувствительность которого лежит в синей части спектра. Поэтому синие предметы кажутся в сумерках ярче предметов других цветов.

Диапазон интенсивности света, воспринимаемого глазами позвоночных, огромен - они чувствительны к значениям освещенности, различающимся в миллиард раз. Это достигается разными механизмами, особыми для каждого вида. У многих рыб, амфибий, рептилий и птиц пигмент сосудистой оболочки концентрируется между наружными сегментами рецепто-

ров при сильном освещении и оттягивается назад при его ослаблении. У этих животных наружные сегменты колбочек также подвижны. У некоторых рыб и амфибий в противоположном направлении движутся и наружные сегменты палочек. Количество света, достигающего сетчатки, регулируется сокращением зрачка. Этот рефлекс хорошо развит у угрей и камбал, ночных рептилий, птиц и млекопитающих.

Рис. 14. График, показывающий, как интенсивность едва видимой короткой вспышки снижается по мере адптации к темноте. Крутая одиночная линия показывает, что происходит, когда сетчатка содержит только палочки. Пологая одиночная линия показываем. что происходит, когда освещены только колбочки.

Для того чтобы на сетчатке возникало резкое изображение, проходящий в глаз свет должен преломляться так, чтобы фокусироваться на ней. Это происходит в роговице и хрусталике. В глазу человека преломление в роговице примерно вдвое больше, чем создаваемое хрусталиком.

Рис. 15. Фокусировка глаза. Хрусталик уплощается при рассматривании дальних предметов и становится более выпуклым при рассматривании предметов вблизи.

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.