скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Особенности извлечения ванадия из отработанных катализаторов

Курсовая работа: Особенности извлечения ванадия из отработанных катализаторов

Введение

Ванадий представляет собой широко распространенный элемент, имеющий важное народнохозяйственное значение и определяющий качество современной металлопродукции. Большие промышленные запасы ванадийсодержаших руд (Россия, ЮАР) и относительно невысокая стоимость ванадия дают право считать его наиболее предпочтительным металлом при выплавке экономнолегированных сталей. В наибольшей степени ванадий используют в металлургии в качестве легирующей добавки при производстве высокопрочных конструкционных и быстрорежущих сталей. Важными сферами его применения являются также авиакосмическая и химическая промышленности, в частности, производство сернокислотных катализаторов.


1. Получение оксида ванадия

Оксид ванадия V2O5—красные или красно-желгые кристаллы, малорастворимые в воде. Плотность V2O5 3,36 г/см3, температура плавления 670°С. Оксид ванадия легко растворяется в щелочах с образованием ванадатов—солей ванадиевых кислот.

Чистый оксид ванадия является исходным сырьем для получения ковкого ванадия, а также применяется в качестве катализатора при производстве серной кислоты и во многих процессах органического синтеза. До 95 % полученного ванадия используется в производстве специальных сталей.

Попутное извлечение оксида ванадия возможно при переработке бокситов способом Байера и комбинированным способом Байер-спекание, а также при переработке алунитов. Содержание V2O5 в алюминиевых рудах составляет 0,025—0,15%. Извлечение V2O5 в раствор при выщелачивании достигает 65% от содержания в руде и в основном зависит от условий выщслачнвання. Iipи выщелачивании с добавкой извести извлечение V2O5 резко снижается, так как образуется малорастворимый ванадат кальция.

В растворах глиноземного производства ванадий находится в виде ванадата натрия Na3VO4. С повышением концентрации щелочи в растворе и сниженном температуры растворимость ванадата натрия уменьшается. В присутствии других солей натрия (карбонатов, сульфатов, фосфатов и фторидов) растворимость ванадата натрия в щелочных растворах также снижается. Ванадий постепенно накапливается в растворах глиноземного производства. Заметное осаждение ванадата натрия при декомпозиции вместе с гироксидом алюминия начинается при содержании в алюминатном растворе V2O5 0,5 г/л.

Ванадий извлекают из части маточного раствора, который упаривают до Na2Oк 200—250 г/л. Необходимую долю маточного раствора, подлежащую выводу из процесса для выделения ванадия, находят из условия, чтобы концентрация V2O5 в алюминатном растворе составляла 0,5—0,6 г/л. Упаренный до содержания Na2Oк 200—250 г/л маточный раствор охлаждают до 15—30 °С. При охлаждении из раствора выделяется в осадок ванадиевый концентрат, который представляет собой сложную смесь соединении ванадия, фосфора, фтора и др. Содержание V2O5 в концентрате в пересчете на сухое вещество составляет 15—18 %. Раствор отделяют от концентрата и возвращают в процесс, а из концентрата выделяют V2O5.

На отечественных заводах применяют аммиачную схему получения оксида ванадия из концентрата. Для очистки от фосфора, фтора н других примесей концентрат растворяют в воде и обрабатывают гипсом с одновременной централизацией раствора кислотой. Фосфор при этом переводится в осадок в виде Са3(РО4)2, фтор — в виде CaF2, осаждаются также примесей кремния, железа и алюминия. Из очищенного от примесей раствора с помощью хлористого аммония или сульфата аммония ванадий выделяют в осадок, который прокаливают н получают безводный оксид V2O5.

Значительная часть примесей может быть выделена из маточного раствора предварительно, при этом получается более богатый ванадиевый концентрат. Для этого упаренный маточный раствор охлаждают до 60 °С при перемешивании. В таких условиях часть соды, сульфатов, фтора и органических веществ переходит осадок, а ванадий остается в pacтвope.


2. Примеры использования извлечения ванадия из отходов промышленных производств

2.1 Ванадий из отработанных катализаторов

Катализаторы, содержащие оксиды ванадия, которые находят применение, например, для производства малеинового ангидрида путем окисления бутана кислородом, в процессе работы теряют свою активность. Для регенерации катализатора проводят обработку его восстановителями. Однако активность и селективность регенерированного катализатора довольно быстро снижаются и восстановительную обработку приходится повторять через непродолжительное время. Известен способ, согласно которому пентаксид ванадия, содержащийся в отработанном катализаторе, обрабатывают тионилхлоридом или фосгеном с получением летучего оксихлорида ванадия, который в свою очередь по известным способам снова превращают в пентаксид ванадия. Еще с большей эффективностью пентаксид ванадия может быть выделен из отработанного катализатора путем обработки четыреххлористым углеродом при температуре >100°с с последующим взаимодействием газообразной реакционной смеси с аммиаком для получения ванадата аммония.

Эти процессы не обеспечивают регенерации катализатора, они лишь позволяют селективно извлекать содержащийся в нем ванадий. В то же время они требуют расходования дополнительных химических реагентов, и при их осуществлении возникает проблема выделения или удаления как образующихся побочных продуктов, так и остатков исходного отработанного катализатора.

Процесс предназначен для регенерации дезактивированных катализаторов окисления, в частности содержащих оксид ванадия. Катализатор обрабатывают водным раствором аммиака и (или) амина при повышенной температуре, в результате чего, по меньшей мере часть катализатора растворяется, а образующийся раствор или суспензию перерабатывают известными приемами для получения катализатора с восстановленной активностью.

Катализатор, в котором весовое соотношение компонентов составляет V2Os : Р205 : СиО = 1 : 1,5 : 0,3, приготовляют в соответствии с патентом США 3 625863 из 1250 г 85 %-ного (по массе) водного раствора фосфорной кислоты, смешанного с 2100 мл воды, 686 г ванадата аммонии, раствора 800 г ацетата меди в 600 мл воды и 3000 мл 25 %-ного раствора аммиака. Катализатор используют в процессе окисления смеси бутана и бутена воздухом. Процесс проводят в трубчатом реакторе длиной 3 м и диаметром 25 мм с электрическим обогревом. Высота насыпного слоя катализатора составляла 260 см.

Через реактор подают (при нормальных условиях) 3,6 м3/ч воздуха, содержащего 38 г/м3 фракции с4, в которой ~80 % составляют н-бутилены. Температура реакции составляет 420 °с. Выход малеинового ангидрида на пропущенный бутилен равен 85 % (по массе). После непрерывной работы в течение нескольких лет выход понизился до 71 %.

Полученный дезактивированный катализатор в количестве 1000 г измельчают и обрабатывают 10 л 27 %-ного раствора аммиака в автоклавном реакторе объемом 20 л при перемешивании в течение 5 ч при =й 150 °с и давлении 2,5 МПа. В результате получают 95 % раствор дезактивированного катализатора (степень растворения 95%).

После этого реакционную смесь упаривают при 150 °с в ротационном испарителе до получения твердой пасты, которую затем высушивают при ~210°с в течение 4 ч. Сухой продукт нагревают при температуре от 200 до 450 °с, повышая температуру на 10 град/ч, в атмосфере кислорода; при ~450 °С продукт выдерживают в течение 16 ч. Полученный материал затем измельчают с получением частиц размером 40— §00 мкм и, добавляя 2 % связующего вещества — стеарата алюминия, прессуют в шарики диаметром 6 мм.

Полученный таким образом регенерированный катализатор используют для окисления фракции с4 в вышеописанном реакторе. Выход малеинового ангидрида на пропущенный бутилен вновь достигает 85 %. После 1500 ч работы выход все еще остается на уровне 84 %; снижение активности происходит не быстрее, чем при использовании заново приготовленного катализатора.

Процесс, разработанный Р. 3. Пири и Р. С. Рикардом (патент США 4 115110, 19 сентября 1978 г.; фирма ч-Ирз Сайенсез, Инк.»). Процесс извлечения соединений ванадия из углеродсодержащих ванадиевых руд и отходов, таких как отработанные ванадиевые катализаторы, включает следующие стадии: обжиг ванадийсодержащего материала в атмосфере воздуха при 600 °С для удаления основного количества органических материалов; дальнейший обжиг в кислороде при ^800 С в течение времени, достаточного для полного перевода ванадия в растворимую форму; выщелачивание полученного продукта разбавленным раствором минеральной кислоты или водой при рН = 2-7 для растворения соединений ванадия; осаждение ванадия из раствора в виде ванадата железа при добавлении растворимого соединения железа при рН = 1 + 7; получение из ванадата железа феррованадия посредством вакуумной восстановительной плавки. Перевод ванадия в растворимую форму происходит без добавления солей щелочных металлов.

Процесс, разработанный Г. Грави, Ж. Ле Гоффом и К. Гонином (патент США 4 182747, 8 января 1980 г.; фирма «Мето Спето CAi, Франция), предназначен для выделения металлических компонентов из отработанных катализаторов, закрепленных на алюминийсодержащих носителях. Процесс, в частности, применяется для извлечения таких металлов, как Al, Mo, V, Ni и Со, присутствующих в отработанном катализаторе. Процесс предусматривает перевод выделяемых металлов в летучие хлориды, которые затем подвергают разделению. Отделение А1С13 достигается при пропускании через гранулы безводного NaCl, а отделение МоС15 — при пропускании через кристаллический KCI. Данный метод может быть, в частности, использован для переработки катализаторов гидрокрекинга или гидродесульфирования.

Вследствие наличия углерода в порах катализатора происходит одновременное восстановление оксидов, например оксид алюминия и хлорирование восстановленных металлов. Сера, которая также присутствует в катализаторе в виде сульфидов металлов, по-видимому, также принимает участие в восстановлении оксидов. Однако в присутствии больших избыточных количеств углерода большая часть серы превращается в хлорид серы, который выводится вместе с отходящими газами.

Установлено, что извлечение хлоридов алюминия, молибдена и ванадия происходит с высоким выходом ~90 %. Выход зависит от условий проведения процесса; он несколько повышается при использовании избытка хлора. Обработке подвергают 1 кг отработанного катализатора на носителе — активного оксида алюминия; в состав катализатора входят соединения V, Мо, Со и Ni. Для удаления углеводородов и воды сырье сначала нагревают в токе азота при 400 °С в течение 2 ч. Обработку проводят в трубчатом реакторе длиной 600 мм и диаметром 140 мм, вращающемся вокруг горизонтальной оси; реактор имеет наружный обогрев, скорость подачи азота составляет 20 л/ч. Через 2 ч реактор охлаждают, выгружают 825 г катализатора, из которого удалены летучие продукты, большая часть которых улавливается путем конденсации. В состав летучих продуктов входит ~1/3 воды и 2/3 смеси углеводородов После списанной обработки катализатор имеет следующий состав, %: С 21; S 8,4; V 9,4; Мо 5,6; Ni 2,4; Со 1,7; Si 0,14; Al 27.

Этот катализатор хлорируют в вертикальном никелевом трубчатом реакторе высотой 500 мм и диаметром 80 мм; в результате наружного обогрева температура составляет 500—600 °С; время реакции 10 ч. Хлор подается с нижнего конца реактора со скоростью 80 л/ч. В результате получают 245 г твердого остатка, имеющего следующий состав, %; С 36; S 4,8; Со 5,6; Ni 8,1; Al 2,8; Si 0,6.

В нем содержатся лишь следы Мо и V, поскольку оба этих металла практически полностью удаляются в виде летучих хлоридов. Металлы, присутствующие в остатке, после растворения выделяют из водного раствора известными методами, например в виде гидроксидов или карбонатов.

Газовую фазу со стадии хлорирования подают в нижнюю часть колонны, заполненной гранулами хлорида натрия размером 1—2 см; температура 350 °С. Из нижней части этой колонны стекает ~ 1 кг продукта, имеющего состав AlCl3-NaCl. Остальные компоненты газовой смеси, в частности, хлориды молибдена и ванадия, не задерживаются в этой колонне и выводятся из ее верхней части.

Отходящие газы подаются в нижнюю часть вертикальной трубки высотой 40 см и диаметром 60 мм, заполненной кристаллическим хлоридом калия. Его получают путем кристаллизации из водного раствора, размеры гранул составляют 1—2 см. Здесь при температуре 400 "С хлорид молибдена сорбируется на поверхности гранул КС1. Выходящие гагы далее проходят через конденсатор, в котором при температуре 60 °С выделяется хлорид ванадия. Газы из конденсатора направляют в абсорберы для выделения хлоридов кремния и серы.

Выход молибдена, выделенного в виде хлорида, превысил 90 % от количества молибдена, содержащегося в отработанном катализаторе. Также ~90 % составил выход ванадия.

2.2 Ванадиевый катализатор из отходов процесса производства адипиновой кислоты

В процессе окисления циклогексанола и (или) циклогексанона азотной кислотой образуются значительные количества побочных продуктов, таких как янтарная и глутаровая кислоты, находящиеся в смеси с основным продуктом адипиновой кислотой. Разделение этих продуктов в промышленности проводится с помощью хорошо известных технологических схем, включающих стадии кристаллизации, концентрирования и повторной кристаллизации. Однако получаемый в результате такой переработки маточный раствор, содержащий янтарную, глутаровую и небольшие количества адипиновой кислоты, далее разделить на индивидуальные компоненты не удается.

Рис. 2. Схема процесса обработки маточного раствора в производстве адипиновой кислоты для выделения металлических катализаторов и органических кислот.

В результате удаления адипиновой кислоты путем кристаллизации и испарения воды и азотной кислоты концентрация металлсодержащего катализатора в упомянутом маточном растворе значительно повышается. Таким образом, сброс этого раствора в виде отхода существенно снижает экономичность всего процесса, поскольку при этом теряются не только органические кислоты, но и значительные количества компонентов катализатора.

Способ включает обработку водного азотнокислого раствора спиртом для этерификации содержащихся в нем кислот с последующей обработкой растворителем, не смешивающимся с водой, разделение водной и органической фазы, выделение азотной кислоты и компонентов катализатора из водной фазы и выделение производных кислот из органической фазы.

Схема процесса представлена на рис. 2. Процесс экстракции этерифицированного продукта проводится непрерывно. Первый и второй экстракционные аппараты представляют собой резервуары с мешалкой. Третий экстрактор выполнен в виде насадочной колонны; подвижной здесь является водная фаза. Время контакта составляет 15—30 мин. При обработке раствора спиртом время контакта ~1 ч. Как экстракция, так и обработка спиртом обычно проводятся при повышенной температуре, >55 °С.

Маточный раствор по линии 1 подают в резервуар 3, куда по линии 2 поступает также спирт. Желательно, чтобы раствор и спирт подавались в равных объемах. Полученный раствор непрерывно подается через последовательно соединенные экстракторы, отстойники и резервуары. Одновременно соответствующий объем бензола или другого растворителя, не смешивающегося с водой, по линии 18 подается с противоположного конца системы и движется противотоком обрабатываемому раствору.

В первом резервуаре происходит этерификация кислот, присутствующих в маточном растворе, при взаимодействии со спиртом и смесь по линии 4 поступает в первый экстрактор 5, где взаимодействует с экстрагентом, поступающим по линии 21 из второго отстойника 13. Далее смесь направляют в первый отстойник 7, где происходит расслаивание, и экстракт-сырец непрерывно удаляется по линии 22.

Водная фаза из отстойника 7 по линии 8 поступает во второй резервуар 9, затем по линии 10 во второй экстрактор 11, где она смешивается с экстрагентом, поступающим из третьего экстрактора 17 по линии 20. Затем смесь по линии 12 подают во второй отстойник 13 и после расслаивания экстракт по линии 21 направляют в первый экстрактор 5, а водную фазу по линии 14 подают в третий резервуар 15 и далее по линии 16 в третий экстрактор. Свежий растворитель, не смешивающийся с водой, например бензол, вводят в третий экстрактор по линии 18. После обработки он по линии 20 поступает во второй экстрактор П. Водный раствор выводят по линии 19 для проведения дальнейшей необходимой обработки.

При осуществлении описанного непрерывного метода по линии 22 непрерывно отводится экстракт-сырец, содержащий эфиры органических кислот, а по линии 19 водный раствор, содержащий избыток спирта, воду, азотную кислоту и компоненты катализатора. Оба выделяемых раствора подвергаются дальнейшей переработке для выделения содержащихся в них компонентов.

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.