скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Многоэтажное производственное здание

3.7 Расчет полки панели

Рис. 3.4. Схема панели перекрытия

Определяем расчетный случай:

l1=bf’-2*100=1600-2*100=1400 мм;

l2=lпл/4-70=5400/4-70=1280 мм;

l1/l2=1400/1280=1.094<2; l2/l1=1280/1400=0.914<2; =>

полка работает как плита, опертая по контуру.

Таблица 4.

Вычисление нагрузок на полку панели перекрытия.

№п/п Наименование нагрузки Нормативная нагрузка, кН/м2 Коэффициент надежности по нагрузке, γf Расчетная нагрузка, кН/м2
1 2 3 4 5
ПЕРЕКРЫТИЕ
I ПОСТОЯННАЯ (gпер)
1

Керамические плитки ρ=1800 кг/м3, δ=13 мм

1800*0.013*9,81*0.95/1000

0.218 1.1 0.240
2

Слой цементного раствора ρ=1800 кг/м3, δ=20 мм

1800*0.02*9,81*0.95/1000

0.336 1.3 0.436
3

Выравнивающий слой из бетона ρ=2200 кг/м3, δ=20 мм

2200*0.02*9,81*0.95/1000

0.410 1.3 0.533
4

Собственный вес полки ρ =2500 кг/м3; δ =50мм

2500*0,05*9,81*0,95/1000

1.1649 1.1 1.2814
ИТОГО: ågпер=g1+g2+g3+g4 2.129 2.491
II ВРЕМЕННАЯ (Vпер)
1

Полезная (V1)

а) кратковременная

б) длительная

14

7

7

1.2

1.05

8.4

7.35

2 Перегородки (V2) 0.5 1.1 0.55
ИТОГО: åVпер=V1+V2 14.5 16.3
ПОЛНАЯ: gпер=ågпер+åVпер 16.629 18.791

Расчетная нагрузка на полосу шириной 1 м:

q=gпер*1=18.791*1=18.791 кН/м.

Изгибающие моменты в полке:

М1=МI=МI’=q*l12*(3*l2-l1)/[12*(4*l2+2.5*l1)]=

=18.791*1.42*(3*1.28-1.4)/[12*(4*1.28+2.5*1.4)]=0.869 кН*м;

МII=МII’=0,75*М1=0,75*0.869=0.652 кН*м;

М2=0,5*М1=0,5*0.869=0.434 кН*м.

Определяем площадь, подбираем диаметр и шаг рабочих стержней сетки в поперечном направлении:

А0=М1/(Rb*h02*100*γb2)=0.869*105/(14.5*352*100*0,9)=0.0489 м2.

где h0=h-as=50-15=35 мм.

Определяем h=0.9749.

Принимаем стержни из арматуры класса Вр500: Rs=360 МПа, Rs ser=260 МПа, Es=170000 МПа.

Аs=М1/(Rs*h0*h)=0.869*106/(360*35*0.9749)=70.723 мм2.

Принимаем шаг стержней в поперечном направлении S1=200 мм, тогда количество рабочих стержней, приходящихся на расчетную полосу шириной 1 метр n1=1000/200+1=6;

Аs1=Аs/n1=70.723/6=11.787 мм2.

Принимаем Æ4 Вр500 (Аs1=12.566 мм2).

Аналогично определяем и шаг рабочих стержней в продольном направлении.

А0=МII/(Rb*h02*100*γb2)=0.652*105/(14.5*352*100*0,9)=0.0367 м2;

Определяем h=0.9812.

Аs=МII/(Rs*h0*h)=0.652*106/(360*35*0.9749)=52.700 мм2.

Принимаем шаг стержней в продольном направлении S2=200 мм, тогда n2=1000/200+1=6;

Аs2=Аs/n2=52.700/6=8.783 мм2.

Принимаем Æ4 Вр500 (Аs2=12.566 мм2).

Принимаем сетку С1 марки  (Рис. 3.5.)

Для восприятия растягивающих напряжений от действия изгибающих моментов МI и МI’ вдоль продольных ребер укладываются сетки С1 марки  с рабочими стержнями Æ4 Вр500 в поперечном направлении с шагом S=200 мм.

Армирование поперечных ребер выполняется сварными каркасами КР2 с продольными стержнями диметром 8 мм из стали класса А400 с поперечными стержнями диаметром 4 мм из стали класса Вр500, устанавливаемыми с шагом S=200 мм.

Рис. 3.5. Сварные сетки С1 и С2 для армирования полки панели.


4. Проектирование ригеля

4.1. Расчет прочности ригеля по нормальному сечению

Рассматривается ригель 1-ого пролета.

Ригель таврового сечения со свесами в растянутой зоне, с ненапрягаемой продольной рабочей арматурой (рис. 2.2.). Расчетное сечение ригеля – прямоугольное размерами: bр=300 мм, hр=700 мм. Площадь сечения консольных свесов в расчет не вводим, так как она вне сжатой зоны бетона.

Материалы ригеля:

- тяжелый бетон класса B25: gb2=0.9; Rb=14.5 МПа (с учётом gb2 Rb=13.05 МПа); Rbt=1.05 МПа (с учётом gb2 Rbt =0.945 МПа); Rb,ser=18.5 МПа; Rbt,ser=1.6 МПа; Eb=27000 МПа, бетон подвергнут тепловой обработке;

- ненапрягаемая продольная рабочая (пролетная и опорная), конструктивная и поперечная арматура класса A400:

а) диаметром 6 и 8 мм: Rs=355 МПа; Rs,ser=390 МПа; Rsw=285 МПа; Rsc=355 МПа; Es=200000 МПа,

б) диаметром от 10 до 40 мм: Rs=365 МПа; Rs,ser=390 МПа; Rsw=290 МПа; Rsc=355 МПа; Es=200000 МПа.

Целью расчета по нормальному сечению ригеля является определение диаметра и количества рабочей продольной арматуры в пролете ригеля и на его левой и правой опорах по грани колонн. Ригель перекрытия рассматривается как элемент поперечной многоэтажной рамы.

Пролетные и опорные изгибающие моменты принимаем в соответствии с огибающей эпюрой изгибающих моментов (рис. 2.5.).

СЕЧЕНИЕ В ПРОЛЕТЕ:

Расчетный момент: Мпр=245.63 кН*м.

h0=hр-as=700-50=650 мм – высота рабочей зоны.

αm=Mпр/(Rb*bр*h02)=245.63/(13.05*300*0.652)=0.148


ξr=0,8/(1+Rs/700)=0,8/(1+365/700)=0.526

αr=ξr*(1-0.5*ξr)=0.526*(1-0.5*0.526)=0.388

αm=0.148<αr=0.388.

Так как αm<αr, то сжатая арматура по расчету не требуется.

Требуемая площадь сечения растянутой арматуры:

As=Rb*bр*h0*[1-(1-2*αm)0.5]/Rs=13.05*300*0.65*[1-(1-2*0.148)0.5]/365=1126.3 мм2.

Принимаем в пролетном сечении (рис. 4.1. сечение 1-1):

- сжатую арматуру: 3Æ10 A400 (Asc=235.6 мм2) и 1Æ16 A400 (Asоп=201.1 мм2),

- растянутую арматуру: 6Æ16 A400 (Asпр=1206.4 мм2).

Коэффициент армирования:

μ=(As+Asc)/bр*h0=(1206.4+235.6)/300*650=0.0074

0.001<μ=0.0084<0.035.

СЕЧЕНИЕ НА ОПОРЕ:

Расчетный момент: Моп=370.04 кН*м.

h0=hр-asс=700-60=640 мм – высота рабочей зоны.

αm=Mоп/(Rb*bр*h02)=370.04/(13.05*300*0.642)=0.208

ξr=0,8/(1+Rs/700)=0,8/(1+365/700)=0.526

αr=ξr*(1-0.5*ξr)=0.526*(1-0.5*0.526)=0.388

αm=0.208<αr=0.388

Так как αm<αr, то сжатая арматура по расчету не требуется.

Требуемая площадь сечения растянутой арматуры:

As=Rb*bр*h0*[1-(1-2*αm)0.5]/Rs=13.05*300*0.64*[1-(1-2*0.208)0.5]/365=1795.4 мм2.


Принимаем в опорном сечении (рис. 4.1. сечение 2-2):

- сжатую арматуру: 3Æ16 A400 (Ascоп=603.2 мм2),

- растянутую арматуру: 1Æ16 A400, 2Æ32 A400 (Asоп=1809.6 мм2) и 3Æ10 A400 (Asc=235.6 мм2).

Коэффициент армирования:

μ=(As+Asc)/bр*h0=(4825.5+235.6)/300*640=0.0138

0.001<μ=0.0138<0.035.

Рис. 4.1. Схема армирования ригеля продольной арматурой.

4.2 Расчет прочности ригеля по наклонному сечению

Расчет ригеля по наклонному сечению производится с целью определения диаметра и шага поперечных стержней.

Длина ригеля 1-ого пролета:

lр=L-hкр сol-0.5*hср сol-2*∆=6400-400-0.5*600-2*50=5600 мм.

где ∆=50 мм – зазор между торцом ригеля и колонной.

Так как расчетное сечение ригеля прямоугольное jf=0.

Так как ригель изготавливается без преднапряжения jn=0.

j=1+jf+jn=1+0+0=1.

Наибольшая поперечная сила в опорном сечении: Qmax=390.53 кН.

Mb=1.5*j*Rbt*bр*h02=1,5*0.945*1*300*0.642=174.18 кН*м.

q1=Pпер-0,5*PVпер=126.428-0,5*94.540=79.158 кН/м.

Qb1=2*(Mb*q1)0.5=2*(174.18*79.158)0.5=234.843 кН > 2*Mb/h0-Qmax = 2*174.18/0.64-390.53=153.792 кН.

Интенсивности хомутов при Qb1≥2*Mb/h0-Qmax:

qsw=(Qmax2-Qb12)/(3*Mb)=(390.532-234.8432)/(3*174.18)=186.319 кН/м.

j*Rbt*bр*h0=0.945*1*300*0.64=181.44 кН.

Qb1=234.843 кН>j*Rbt*bр*h0=181.44кН =>

при Qb1>j*Rbt*bр*h0 принимаем qsw=186.319 кН/м.

qsw=186.319 кН/м > 0,25*j*Rbt*bр=0,25*0.945*300=70.875кН/м

Так как qsw>0,25*j*Rbt*bр, то примем qsw=186.319 кН/м.

Окончательно получим qsw=186.319 кН/м.

Задаемся шагом поперечных стержней.

Так как hр>450 мм, то на приопорных участках длиной l1=0,25*L=0,25*6400=1600 мм принимаем шаг S1 из условий:

S1≤hр/3=700/3=233.3 мм,

S1≤500 мм.

В средней части пролета назначаем шаг S2 из условий:

S2≤0,75*hр=0,75*700=525 мм,

S2≤500 мм.

Шаг хомутов, учитываемых в расчете, должен быть не более значения:

Sw.max=Rbt*bр*h02/Q=0.945*0.3*6402/390.53=297.3 мм

Принимаем шаг хомутов у опоры S1=200 мм, в пролете S2=500 мм.

Требуемая площадь одного поперечного стержня арматуры у опор:

Asw=qsw*S1/Rsw*n=186.319*200/285*3=43.583 мм2,

где n=3 шт - количество поперечных стержней в сечении у опор.

Диаметр одного поперечного стержня арматуры у опор назначаем по требуемой площади одного поперечного стержня и из условия свариваемости, диаметр одного поперечного стержня арматуры в пролете - из условия свариваемости:

dsw≥0.25*ds.max=0,25*32=8.0 мм.

Принимаем:

- в поперечном сечении у опор 3 стержня dsw1=8 мм (Asw1=150.8 мм2),

- в поперечном сечении в пролете 3 стержня dsw2=8 мм (Asw2=150.8 мм2).

Проверка прочности по наклонной полосе между наклонными трещинами.

Qmax=390.53 кН<0.3*Rb*b*h0=0.3*13.05*0.3*640=835.2 кН => прочность по наклонной полосе между наклонными трещинами обеспечена.


4.3 Построение эпюры материалов

 

4.3.1 Определение мест фактического обрыва нижних стержней

В целях экономии арматурной стали часть продольной рабочей арматуры обрывают в пролете, не доводя до опоры. Для определения мест обрыва строится эпюра материалов (арматуры). Места теоретического обрыва стержней определим графическим способом на огибающей эпюре изгибающих моментов (Рис. 4.2.).

Мsпр=Аsпр*Rs*u*h0*10-3=1206.4*365*0.922*0.65*10-3=263.93 кН*м,

где u=1-0,5*x=1-0,5*0.156=0.922;

x=Asпр*Rs/Rb*bр*h0=1206.4*365/13.05*300*650=0.156.

Продольные стержни доводимые за край опоры: 3Æ16 (Аs1=603.2 мм2).

Мs1=Аs1*Rs*u*h0*10-3=603.2*365*0.961*0.65*10-3=137.53 кН*м;

где u=1-0,5*x=1-0,5*0.078=0.961;

x=As1*Rs/Rb*bр*h0=603.2*365/13.05*300*650=0.078.

Определим расстояние от точек теоретического обрыва W из условий (здесь qsw=Asw*Rsw/S, ds- диаметр обрываемого стержня):

W≥Q/(2*qsw)+5*ds,

если Q/(2*qsw)>h0, то W≥2*h0*(1-qsw*h0/Q)+5*ds,

W кратно 50 мм.

1) qsw1=Asw1*Rsw/S1=150.8*285/200=214.885 кН/м,

Q1/(2*qsw1)+5*ds=170.89/(2*214.885)+5*16=477.6 мм.

2*h0*(1-qsw1*h0/Q1)+5*ds=2*650*(1-214.885*0.65/170.89)+5*16=317.5 мм.

Q1/(2*qsw1)=397.6<h0.

Принимаем W1=500 мм.

2) qsw2=Asw2*Rsw/S2=150.8*285/200=214.885 кН/м,

Q2/(2*qsw2)+5*ds.обр=168.58/(2*214.885)+5*16=472.3

2*h0*(1-qsw2*h0/Q2)+5*ds=2*650*(1-214.885*0.65/168.58)+5*16=302.9 мм.

Q2/(2*qsw2)=392.3<h0.

Принимаем W2=500 мм.

Длина обрываемых нижних стержней (в пролетной части ригеля):

lниз=l1Т+W1+W2=2750+500+500=3750 мм.

4.3.2 Определение мест фактического обрыва верхних стержней

Мsоп=Аsоп*Rs*u*h0*10-3=2045.2*365*0.866*0.64*10-3=413.70 кН*м,

где u=1-0,5*x=1-0,5*0.268=0.866;

x=Asоп*Rs/Rb*bр*h0=2045.2*365/13.05*300*640=0.268.

Продольные стержни доводимые за край опоры 4 (Аs2=436.7 мм2).

Мs2=Аs2*Rs*u*h0*10-3=436.7*365*0.971*0.64*10-3=99.09 кН*м;

где u=1-0,5*x=1-0,5*0.057=0.971;

x=As2*Rs/Rb*bр*h0=436.7*365/13.05*300*640=0.057.

3) qsw3=Asw3*Rsw/S1=150.8*285/200=214.885 кН/м.

Q3/(2*qsw3)+5*ds.обр=296.15/(2*214.885)+5*0=689.1 мм.

2*h0*(1-qsw3*h0/Q3)+5*ds=2*640*(1-214.885*0.64/Q3)+5*0=685.6 мм.

Q3/(2*qsw3)>h0.

 

Принимаем W3=700 мм.

qsw4=Asw4*Rsw/S1=150.8*285/200=214.885 кН/м.

Q4/(2*qsw4)+5*ds.обр=243.89/(2*214.885)+5*0=567.5 мм.

2*h0*(1-qsw4*h0/Q4)+5*ds=2*640*(1-214.885*0.64/243.89)+5*0=558.2 мм.

Q4/(2*qsw4)<h0.

Принимаем W4=600 мм.

Длина обрываемых верхних стержней:

- со стороны крайней колонны

lверх кр=l2Т кр+W3=760+700=1460 мм, принимаем lверх кр=1800 мм.

- со стороны средней колонны

lверх ср=l2Т ср+W4=1200+600=1800 мм, принимаем lверх ср=1800 мм.


Рис. 4.2. Эпюра материалов.

Рис. 4.3. Плоские каркасы ригеля перекрытия КР3 и КР4.


5 Проектирование колонны

5.1 Расчет колонны на устойчивость и прочность

Значение изгибающих моментов и продольных усилий принимается по результатам статического расчета поперечной рамы. Колонны принимаются двухэтажной разрезки. Колонны многоэтажного каркасного здания с жесткими узлами рассматриваются как элементы поперечной рамы и рассчитываются как внецентренно сжатые элементы от совместного действия изгибающих моментов и продольных сил.

Рассматривается нижняя колонна крайнего ряда сечением bcol*hсol=400*400 мм, изготавливаемая из тяжелого бетона класса B30: gb2=0.9; Rb=17 МПа; Rbt=1.2 МПа; (с учетом gb2 Rb=15.3 МПа; Rbt=1.08 МПа), Rb,ser=22 МПа; Rbt,ser=1.8 МПа; Eb=29000 МПа, бетон подвергнут тепловой обработке, и арматуры класса A400 Rsc=365 МПа, Rs=365 МПа, Es=200000 МПа.

Расчетная высота колонны принимается равной высоте этажа, т.е. l0=3.3 м.

Максимальный изгибающий момент в ригеле Mmax=370.04 кН*м, тогда получим одну комбинацию расчетных усилий в колонне:

М=0.6*Mmax=0.6*370.04=222.024 кН*м,

N=2431.352 кН.

e0=М/N=222.024/2431.352=0.0913 м.

Расчетные усилия от длительной нагрузки:

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.