скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Проблемы водоснабжения России

Воды хлоридно-магниевого подтипа сульфатного типа среди подземных вод седиментационного генезиса встречаются редко, и условия их формирования изучены слабо.

Ювенильные воды. Термин ювенильные воды” был предложен Э. Зюссом для наименования вод, которые поднимаются из глубоких недр Земли в результате вулканической деятельности и впервые попадают на поверхность. В чистом виде даже в районах интенсивного современного вулканизма такие воды отсутствуют.

В настоящее время под ювенильными понимают подземные воды, развитые в области современной тектоно-магматической активности.

Гидрохимические особенности вод областей активного вулканизма тесно связаны со стадийностью газовыделения из вулканического очага. Установлены три стадии, сменяющиеся во времени: хлоридная, сульфатная и углекислая. На всех стадиях в вулканических газах по содержанию преобладает СО2, но на первой стадии характерно присутствие значительных количеств HCl, на второй – H2S.

На хлоридной и сульфатной стадиях газовыделения вулкана образуются следующие типы подземных вод [7]:

1.   Хлоридно-водородные углекислые термы поверхностного формирования. Химический состав их образуется за счет растворения в приповерхностных условиях вулканических эманаций. Так как вода находится в состоянии кипения, она интенсивно испаряется, благодаря чему увеличивается минерализация.

2.   Сульфатные углекисло-сероводородные термы поверхностного формирования. Располагаются в кратерах активно действующих вулканов, но отвечают стадии деятельности вулкана, когда главными газами наряду с преобладающим СО2 являются H2S и другие сернистые газы.

3.   Хлоридно-сульфатные термы глубинного формирования. Они приурочены к склонам действующих вулканов или их подножиям и связаны обычно с вулканическими отложениями. Подземные воды растворяют какую-то часть газовых эманаций, состоящую из сернистых газов и хлористого водорода. Удаляясь от магматического очага в сторону разгрузки водоносного горизонта, подземные воды вступают во взаимодействие с окружающими горными породами, благодаря чему снижается величина их рН, они теряют алюминий и железо и обогащаются Са, Mg, Na и др.

Магматогенные воды разломных зон областей тектонической активности представляют собой растворенный в подземных водах конденсат эндогенного (глубинного) флюида.

Воды ювенильного происхождения отличаются весьма сложным и разнообразным составом, поскольку формирование их связано с эндогенными и экзогенными факторами: участием глубинных флюидов, большого количества агрессивных газов и высоких температур, с одной стороны, подземных вод инфильтрационно-атмосферного генезиса и водовмещающих пород с другой.

Находят широкое применение в качестве лечебных минеральных вод.

Воды смешанного генезиса. К этой группе относятся воды разного химического типа и состава, образующихся при смешении вод инфильтрационно-атмосферного, седиментационного и ювенильного генезиса.

Широко распространены воды, в которых ювенильным (глубинным) компонентом является СО2. За счет воздействия СО2 на вмещающие породы обычно формируются углекислые воды карбонатного типа.

По гидрохимическим показателям воды отличаются широким диапазоном изменения минерализации от 0,5 1 до 50 – 60 г/л. По химическому составу они разнообразны, наиболее часто принадлежат к щелочно-соляным или соляно-щелочным водам. Углекислый газ содержится в большом количестве: в растворе – до 2,5 – 4,5 г/л, в спонтанных газах – до 100%. По температурным условиям воды холодные, теплые и горячие (глубинного) флюида.

Воды ювенильного происхождения отличаются весьма сложным и разнообразным составом, поскольку формирование их связано эндогенными и экзогенными факторами: участием глубинных флюидов, большого количества агрессивных газов и высоких температур, с одной стороны, подземных вод инфильтрационно-атмосферного генезиса и водовмещающих пород – с другой.

Находят широкое применение в качестве лечебных вод.

Воды смешанного генезиса. К этой группе относятся воды разного химического типа и состава, образующихся при смешении вод инфильтрационно-атмосферного, седиментационного и ювенильного генезиса.

Широко распространены воды, в которых ювенильным (глубинным) компонентам является СО2. За счет воздействия СО2 на вмещающие породы обычно формируются углекислые воды карбонатного типа.

По гидрохимическим показателям воды отличаются широким диапазоном изменения минерализации – от 0,5 1 до 100%, т.е. газ может быть нацело углекислым, иногда углекисло-азотным. По температурным условиям воды холодные, теплые и горячие, иногда температура достигает 100%. В горячих водах типична высокая концентрация кремнекислоты, составляющая сотни миллиграммов на 1л. Нередко в водах присутствуют много фтора (до 10 – 20мг/л), а pH воды > 9 – 9,5.

Примером могут служить воды Кавказских минеральных источников (типа “Боржоми”, “Ессентуки №17” и Арзни”).

Среди подземных вод смешанного генезиса интерес представляют воды хлоридно-кальциевого типа.

Распространены грунтовые воды хлоридно-кальциевого типа с минерализацией от 5 до 75г/л. Очень интересны хлоридно-кальциевые воды, выявленные на территории кристаллических щитов. Это обычно грунтовые, воды связанные как с порами выветривания кристаллических пород, так и с покрывающими их четвертичными отложениями. Воды пресные и ультрапресные. Они или являются “существенно” хлоридно-кальциевыми и содержат CaCI2 до 30 – 40экв%, или по первым преобладающим компонентам относятся к хлоридно-натриевым. Условия формирования вод изучены слабо [8].

1.2.1 Миграция элементов в подземных водах

Миграция элементов в подземных водах неразрывно связана с историей элементов в земной коре. Условия миграции элементов – один из наиболее сложных вопросов. Темпы движения в различные стадии их существования весьма различны. Это в основном определяется термодинамической обстановкой среды в которой происходит миграция. Элементы мигрируют то в жидком, то в твердом, то в газообразном состоянии вещества [9].

Воде всегда придавалась исключительная роль во всех геохимических процессах: выделении минералов из водных растворов, разрушении минералов и пород.

Под термином “миграция подразумевается перемещение и перераспределение химических элементов в земной коре и на ее поверхности. В водных растворах элементы перемещаются в виде ионов, молекул коллоидных частиц. Миграционная способность у разных элементов различна. В результате миграции выносятся и рассеиваются одни элементы и накапливаются другие [10].

Миграция элементов зависит от двух основных причин:

1)   от внутренних свойств атома мигрирующего элемента. К этим факторам относят свойства связи, химические свойства соединений, энергетические свойства ионов, гравитационные и радиоактивные свойства атомов, валентности и ионные радиусы химических элементов.

2)   от внешних термодинамических условий обстановки миграции. Этим термином называют параметры, характеризующие среду, в которой перемещаются химические элементы [8].

Чем больше валентность элементов, тем ниже их миграционная способность, так как элементы с большей валентностью образуют преимущественна, за небольшим исключением, слаборастворимые соединения.

Чем больше ионные радиусы и меньше валентность элементов, тем выше их миграционная способность. Большую роль в миграции элементов играет характер водной среды, определяемый специфическими особенностями ее состава, в частности величиной рН.

Миграция оценивается качественно и количественно. Ее качественная оценка заключается в фиксации различия химического состава подземных вод разных районов водоносных горизонтов, комплексов, что позволяет делать заключения о перемещении элементов в подземных водах. Изменения в химическом составе подземных вод служат также основанием для выводов относительно участия пород, газов и других сред в миграции элементов. Количественно миграция элементов оценивается с помощью численных показателей перемещения элементов в подземных водах и образуемых ими системах.

Для относительной количественной характеристики миграции элементов в системе “подземная вода - порода” А.И. Перельман [11] предложил вычислить интенсивность водной миграции в виде коэффициента водной миграции. Он представляет собой отношение содержания элемента в минеральном остатке воды к его содержанию в водовмещающих горных породах:

Кх = mx ∙ 100/а nx


где mx содержание элемента х в воде (в г/л), nx содержание элемента х в породе (в %), а – сумма минеральных веществ воды (в г/л) [12].

На формирование химического состава подземных вод, а следовательно, на миграционные особенности элементов в ряде случаев оказывает влияние связанная вода, которая отличается от свободной гравитационной воды по своим свойствам и строению. Она находится в тесном взаимодействии с породами, в которых удерживается силами, превышающими силу тяжести. Связанная вода имеет несколько видов и характеризуется различными формами нахождения в породах. Основные ее виды: 1) вода, входящая в состав минералов; 2) прочно связанная; 3) рыхло связанная.

Вода, входящая в состав минералов, является химически связанной водой. В. И. Вернадский предложил различать следующие разновидности химически связанной воды: а) конституционную, наиболее прочно связанную с кристаллической решеткой минералов; б) кристаллизационную, связь которой с кристаллической решеткой минералов менее прочна; в) цеолитную с минимальной прочностью связи. Примерами химически связанной воды является вода в составе гипса (СаSО4 ∙ n Н2О). Также она входит в состав многих глинистых минералов, слюд, хлорита и др. В минералах она находится как в виде молекул, так и в виде ионов Н+ и ОН-.

Прочно связанная вода это гигроскопическая вода, расположенная непосредственно на поверхности минерала. Она представлена пленкой различной толщины и сложного строения. Прочно связанная вода в отличие от свободной воды не способна к растворению и не может перемещаться в жидком виде (перемещается в парообразном состоянии). Расположение ее молекул значительно прочнее и плотнее, чем у свободной воды.

Рыхло связанная вода свойственна глинистым породам. Это вода приурочена к поверхности глинистых минералов и является результатом осмотического впитывание молекул воды диффузионной оболочкой внешней части двойного электрического слоя (одного отрицательно заряженного на поверхности породы и другого – положительно заряженного в воде) [13].

1.2.2 Влияние газового состава воды на миграцию элементов

Во всех природных водах растворены газы, некоторые содержат и свободный (спонтанный) газ, образующий пузырьки.

Растворенные газы являются одним из основных элементов химического состава природных вод. Установлено, что по мере увеличения глубины распространения природных вод и степени их изоляции от дневной поверхности генезис растворенных газов в общем закономерно изменяется. Газы преимущественно атмосферного происхождения сменяются на глубине преимущественно биохемогенными, а биохемогенные метаморфогенными или в областях современной вулканической деятельности вулканоген-ными [14].

Содержание газов в водах, как правило, невелико, однако их геохимическая роль не пропорциональна массе огромное значение имеет высокая химическая активность и миграционная способность газов.

В соответствии с этим принято различать три основные геохимические среды формирования газов и основные типы природных вод [15]:

1.   воды с газами окислительной обстановки (N2, O2, CO2 и др.),

2.   воды с газами восстановительной обстановки (CH4, H2S, CO2, N2 и др.),

3.   воды с газами метаморфической обстановки (СО2 и др.).

Кислородные воды. Свободный кислород, растворенный в водах играет большую роль. Он определяет условия миграции других элементов, существования особых групп бактерий, важнейшие геохимические особенности вод, концентрацию элементов на барьерах.

Сероводородные воды. Геохимическая роль сероводорода и его производных – ионов HS- и S2- огромна, так как они коренным образом меняет условия миграции большинства химических элементов, особенно образующих нерастворимые сульфиды.

 

1.3 Водные ресурсы и водный баланс Кавказа

Кабардино-Балкарская республика (КБР) занимает центральную часть северного склона Главного Кавказского хребта. Среди природных богатств КБР большое хозяйственное значение имеют реки.

Высокогорная зона Кавказского хребта – область вечных снегов и ледников. Снег, попадая в котловины, подтаивает днем от нагревания солнцем, ночью опять замерзает постепенно превращаясь в фирн.

В ледниках и вечных снегах высокогорной зоны берут начало главные реки Кабарды, потоками стекающие с гор и замедляющие свое течение лишь на равнине [16].

Основные реки, протекающие на территории Кабардино-Балкарии, принадлежат к бассейну р. Терека.

Богатая гидрографическая сеть горных рек КБР направлена в основном с юго-запада на северо-восток. Базисом эрозии для этих рек является долина р. Терек, огибающая крутой петлей Терский и Сунженский хребты в северо-восточном углу территории КБР.

Главным речным бассейном и основным носителем гидроэнергетических ресурсов КБР является бассейн р. Малки. Река Баксан, наиболее многоводная река бассейна Малки. На своем пути Баксан принимает многочисленные притоки.

У восточной границы КБР протекает р. Хазны-дон принадлежащая к бассейну р. Урух. Несколько малых притоков Терека (Лескен, Аргудан и др.) располагаются между устьями рек Урух и Малка [17].

Гидрологический режим главных рек бассейна Малки освещаются данными наблюдений 14 гидрометрических станций.

Материалы гидрометрических работ в бассейне р. Малки дают возможность детально охарактеризовать сток основных его рек. График среднемесячных расходов воды рек бассейна Малки дает наглядное представление о характере сезонного колебания расходов воды рек Малки, Баксана, Черека, Чегема и Терека.

Большим колебаниям подвержен режим рек, которые берут свое начало ниже зоны снегов и зависит от количества осадков, выпадающих в их бассейне в течении года [18].

Среднее количество атмосферных осадков в Терском районе составляет 895мм.

С увеличением абсолютных высот количество атмосферных осадков растет, причем только до 2500 – 3500м. Далее на восток оно уменьшается до 380 – 1020мм в бассейне р. Терек. Минимальные величины увеличения осадков в высотных зонах 500 – 4000м прослеживается в бассейне рек в районе г. Эльбрус, где составляют 100 – 530мм, например р. Малка 380мм, р. Баксан – 530мм.

В бассейне р. Терека разность стока в высотных зонах 500 – 3000м равна 420 – 1280мм (р. Малка – 420мм, р. Урух – 1280мм). Величина слоя стока с высотой увеличивается до верхних отметок водоразделов и на высоте 4000м в Тереком секторе достигает 1600мм.

В Терском секторе подземный сток составляет 173мм.

Величина испарения – разность между атмосферными осадками и полным речным стоком. Эта величина в Терском районе равна 451мм.

Изменение испарения с высотой более сложное, чем атмосферных осадков и речного стока. В бассейнах рек с избыточным или достаточным увлажнением, с высотой от предгорий в горы оно уменьшается и минимальное отмечается в высокогорной зоне на высотах 3500 4000м. Такой тип испарения характерен для большинства бассейнов рек КБР [19].


1.4 Влияние химического состава воды на здоровье населения

Вопрос о влиянии на организм минеральных веществ, часто находящихся в водной среде, является в настоящее время весьма актуальным в связи с использованием для питьевых целей искусственно опресненных вод.

Состояние водоснабжения населения России, по оценке Госкомсанэпиднадзора, неудовлетворительное. Качество питьевой воды, подаваемой населению, не отвечает гигиеническим требованиям по санитарно-химическим показателям примерно в 22%. Около 1/3 население используют для питья воду из децентрализованных источников, которая в 31,6% случаев не отвечает требованиям. В целом около 50% населения Российской Федерации употребляют для питья воду, не соответствующую гигиеническим требованиям по различным показателям качества.

Употребление высокоминерализованных вод людьми, не привыкшими к ним, в состоянии обусловливать сравнительно кратковременное общее недомогание и обострение хронических заболеваний желудочно-кишечного тракта. По мнению экспертов ВОЗ, использование для питья морской воды ведет к прогрессирующему обезвоживанию организма, нарушению его кислотно-щелочного состояние, увеличению остаточного азота в крови, ослаблению сердечной деятельности, усилению чувства жажды, резкому упадку сил и не редко летальному исходу.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.