скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Конструювання обчислювальної техніки

Ni = 0, якщо αi = π/2,

Ni < 0, якщо π/2  αi < π.

Рис. 2.2. Потужність сили

При дії моменту сил Mj на тіло j (рис. 2.3) потужність моментів сил визначається формулою:

,

де  - кутова швидкість тіла j;

Ni < 0, якщо Mj і  направлен протилежно;

Ni > 0, якщо Mj і  співпадають за напрямом;


 


Рис.2.3. Потужність моменту сил

Потужність алгебраїчною величиною, тобто скалярною величиною, і потужність системи сил дорівнюють сумі потужностей кожної складової сили. Умова незмінності потужност в будь-який момент часу при заміні діючої системи сил приведеною силою ма вигляд:

.

Звідси знаходимо приведену силу:

.

2.1.3 Приведення пружних параметрів

З точки зору незмінності закону руху системи пружні елементи еквівалентні, якщо в будь-який момент часу вони накопичують однакову потенціальну енергію.

Між силою F, що діє на пружній лінійний елемент, і величиною деформації, що при цьому виникає, існує залежність:

F = c x ,

де F сила, що викликає деформацію;

с коефіцієнт жорсткості, с = const;

x деформація пружного елемента.

Пружний елемент накопичує потенціальну енергію . Потенціальна енергія є скалярною величиною і потенціальна енергія системи пружних елементів дорівнює сумі потенціальних енергій пружних елементів. Умова інваріантності потенціальної енергії, що накопичує система елементів, при переході до одного приведеного пружного елемента має вигляд:

.

Приведений коефіцієнт жорсткості

. (2.3)

Процедура приведення істотно спрощується, якщо здійснювати поетапне приведення паралельно або послідовно з’єднаних елементів (рис. 2.4)

 


Рис. 2.4. Типи з’єднань пружних елементів


Паралельне з'єднання характеризується тим, що пружні елементи мають однакові деформац (рис. 2.4 а): x1 = … = xi = … = xn. Ту ж саму деформацію ма приведений пружний елемент (рис. 2.4 в): x1 = q. Формула (2.3) для паралельного з’єднання пружних елементів набуде вигляду:

. (2.4)

Приведений коефіцієнт жорсткості паралельно з’єднаних пружних елементів більше коефіцієнта жорсткості будь-якого елемента. При цьому сила F розподіляється між елементами, тобто . Значення Fi = ci xi = ci q.

Послідовне з’єднання характеризується тим, що кожний пружний елемент сприймає однакову силу (рис. 2.4 б). Потенціальну енергію такої системи запишемо в вигляді:

.

З ншого боку

.

Рівняння (2.3) для послідовного з’єднання пружних елементів, враховуючи останні формули, запишемо в такому вигляді:

. (2.5)

Приведена податливість 1/с послідовно з’єднаних пружних елементів більша податливост будь-якого елемента. При цьому деформація всієї системи . Значення деформації кожного елемента .

На рис. 2.4, г зображено з’єднання двох пружних елементів. Це паралельне з’єднання, бо деформації обох елементів однакові по модулю направлені проти дії пружної сили кожного елемента. Мають місце співвідношення: F = F1 + F2 та .

2.1.4 Приведення параметрів дисипації

В реальних механічних системах має місце незворотне перетворення механічно енергії в теплову. Це перетворення відбувається за рахунок сил тертя: зовнішніх чи внутрішніх. Елементи, в яких відбувається втрата механічної енергії, називають елементами дисипації (розсіювання).

З точки зору незмінності закону руху системи, дисипативні елементи еквівалентні, якщо вони в будь-який момент часу розсіюють однакову енергію.

Розсіювання механічної енергії в пружному елементі пов’язане з його нелінійністю (рис. 2.5). Графіки F(x) при прямій і зворотній деформації відрізняються між собою. Введемо такі позначення:


↑ A    – робота сили при прямій деформації.

                              Їй відповіда горизонтально заштрихована площа;

↓ А – робота сили при зворотній деформації.

                             Їй відповіда вертикально заштрихована площа;

                             ↑↓А – розсіяна енергія, А↑↓= А↑–А↓.

Рис. 2.5. Характеристика    F(x) нелінійного елемента

Коефіцієнт дисипації ψ вводиться як відношення

ψ = А↑↓ / А↑, (2.6)

де ψ – безрозмірний коефіцієнт, який визначає відносну частину розсіяно енергії від енергії, що накопичує пружний елемент.

Енергія, яку розсіює механічна система в пружних елементах дорівнює сумі енергій, що розсіює кожний дисипативний елемент. Умова незмінності розсіяної енергії при переході до одного приведеного елемента дисипації відображається рівнянням:

.

Приведений коефіцієнт дисипації

. (2.7)

При паралельному з’єднанні елементів дисипації формула (2.7) має вигляд:

. (2.8)

При послідовному з’єднанні формула (2.7) має вигляд:

. (2.9)

2.2 Вільні коливання одномасової системи

Розглянемо одномасову модель механічної системи (рис. 2.6).

Рис. 2.6. Одномасова система

В стані рівноваги пружина розтягнута. Пружна сила врівноважує силу тяжіння mg. Стан рівноваги вибирається як початкове положення. Якщо систему вивести із стану рівноваги, вона здійснює коливання відносно початкового положення. Згідно закону Ньютона:


, (2.10)

де пружна сила cq та сила тертя  направлен відповідно проти переміщення q та проти напрямку руху, тобто проти швидкості

Рівняння (2.10) запишемо в канонічному вигляді:

, (2.11)

де  – кутова частота власних коливань; n = b/2m, де b – кінематичний коефіцієнт тертя.

Рівняння (2.11) – лінійне однорідне диференціальне рівняння другого порядку зі сталими коефіцієнтами. Воно описує вільні коливання. В реальних механічних системах значення коефіцієнта тертя b практично не впливає на частоту вільних коливань. Тому розв’язок рівняння (2.11) має вигляд:

q = e–nt (С1·sin kt + С2·cos kt) = e–ntA·cos(kt - j), (2.12)

де ; sin j = С1/A; cos j = С2/A.

Стал нтегрування С1 і С2 визначаються з початкових умов коливного процесу  і qo = q(0):

С2 = qo; С1 = (+ nqo)/ k. (2.13)

Завдяки множнику е–nt навіть при малому значенні n система з часом припиняє свої вільн коливання:

при t®¥ значення е–nt =1/ent ® 0 (рис. 2.7).


 


Рис. 2.7. Затухаючі вільні коливання

Вільн коливання відіграють дуже важливу роль у визначенні приведених параметрів механічної системи експериментальним способом.

Алгоритм експерименту:

1. Будується статична характеристика F = F(q) (рис.2.8) і визначається коефіцієнт жорсткості с = F / q.

Рис. 2.8. Статична характеристика F(q)

2. Збуджуються вільні коливання. Експериментально визначають Т або f й знаходять кругову частоту власних коливань:

k = 2π / T = 2πf.

3. Знаходять приведену масу:

4. Збуджують власні коливання і спостерігають їх затухання, вимірюють амплітуду А1 Аs та визначають:

,

де S число коливань, що спостерігається (звичайно S = 10, 100, 1000, ...)

5. Визначають приведений коефіцієнт затухання:

n = 2λ / T.

2.3 Вимушені коливання при гармонічному збудженні

Розглянемо одномасову модель механічної системи, яка здійснює вимушені коливання під дією гармонічної сили (рис. 2.9):

F(t) = F0 cos ωt.

При F=0 та q=0 система має стан стійкої рівноваги.

Згідно закону Ньютона складаємо баланс сил:

.

В канонічній формі рівняння набуває вигляду

, (2.14)


де 2n=b/n, k2 =c/m, .

Рис. 2.9. Вимушені коливання

Це лінійне неоднорідне диференціальне рівняння другого порядку зі сталими коефіцієнтами. Його загальний розв’язок qЗ.Н. шукають у вигляді:

qЗ.Н. = qЗ.О. + qЧ.Н., (2.15)

де qЗ.О. загальний розв’язок однорідного рівняння (при f0=0);

qЧ.Н. частковий розв’язок неоднорідного рівняння.

Оскільки при t®¥ вільні коливання затухають, то достатньо визначити частковий розв’язок qЧ.Н.(t). Його шукаємо у вигляді гармоніки, бо гармонічною є права частина рівняння (2.14).

qЧ.Н. = Acos(ωt-j) = С1sin ωt+С2cos ωt. (2.16)

Стал нтегрування відповідають усталеному режиму вимушених коливань, які визначають за таким алгоритмом. Диференціюємо рівняння (2.16) один, а потім ще один раз одержимо відповідно  та , які підставляємо в рівняння (2.14). З умови тотожної рівності лівої і правої частини, прирівнюючи коефіцієнти при cos ωt та sin ωt, одержимо два алгебраїчні рівняння з двома невідомими А і tg φ. Остаточно одержимо:

, . (2.17)

2.4 Коефіцієнт динамічності

Рівняння (2.17) на практиці застосовують в іншому вигляді.

Введемо поняття коефіцієнта динамічності:

, (2.18)

де Ао деформація пружного елементу від дії сталої сили Fo. Коефіцієнт динамічност безрозмірна величина.

Із сказаного раніше випливає, що

. (2.19)

Введемо також такі безрозмірні коефіцієнти:

, (2.20)

. (2.21)

Тод підставляючи (2.17) та (2.19) в рівняння (2.18) та враховуючи (2.20) і (2.21), одержимо

. (2.22)

В останній формулі всі величини безрозмірні.

Типовий графік функції (2.22) зображено на рис.2.10.

Рис. 2.10. Графік функції

Допустиме значення  коефіцієнта динамічності визначає резонансну зону , дорезонансну зону  та зарезонансну зону .

При  коефіцієнт динамічності . Тобто при зростанні Z в зарезонансній зоні система взагалі не реагує на збудження.

Вплив параметра δ проявляється лише в резонансній зоні. Максимальне значення функція  приймає при деякому значення Z*.

. (2.23)


2.5 Зменшення вимушених коливань

Зменшення рівня вимушених коливань зводиться до зменшення значень коефіцієнта динамічності. Це може здійснюватись за рахунок зміни параметрів с, m та b. Характер зміни параметрів залежить від того, в якій зоні працює система: дорезонансній, резонансній, зарезонансній.

Резонанс. Зменшувати коливання в резонансному режимі можна тільки за рахунок збільшення параметра δ = n/k та далі за схемою

Отже, щоб зменшити коливання в резонансному режимі треба збільшувати коефіцієнт кінематичного тертя b, зменшувати приведену масу або приведений коефіцієнт жорсткості.

Дорезонансний режим. Зменшення коефіцієнта динамічності αd відповідає схемі:

 


 

В дорезонансному режимі треба збільшувати коефіцієнт жорсткості С або зменшувати приведену масу m. Потрібного результату можна досягти, зменшуючи кругову частоту ω вимушених коливань. Проте досить часто це пов’язано із зменшенням робочих швидкостей.

Зарезонансний режим. Має місце наступна схема:


Подпись: &amp;#969;&amp;#8593;

m↑

 

c↓

 

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.