скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Кометаболизм ЭДТА и глюкозы у бактериального штамма LPM-4

К третьему типу кометаболизма относятся процессы ассимиляции неростовых субстратов, что сопряжено с использованием ростовых субстратов, в результате чего соединения углерода включаются в компоненты клетки. Сначала подобные процессы были описаны как миксотрофия, однако поскольку один из субстратов не является ростовым, этот термин в данном случае является некорректным. Включение углерода неростовых субстратов или продуктов их трансформации в конструктивный метаболизм, который приводит к увеличению биомассы, предложено называть дополнительным метаболизмом [15]. Поскольку данные процессы осуществляются только при ассимиляции ростового субстрата, их можно отнести к кометаболизму. В этом случае продукты трансформации неростовых субстратов являются компонентами клеток.

Четвертый тип кометаболизма – синтаболизм – способность микроорганизмов расти на смеси двух или больше неростовых субстратов [16]. Синтаболизм был выявлен у облигатных метанотрофов. Показано, что в определенных условиях они способны расти при наличии двух субстратов одновременно, каждый из которых сам по себе не является ростовым. В основе синтаболизма лежит способность метанотрофных бактерий сооокислять (вследствие неспецифичности метанмонооксигеназы) С2Н6 или СО. Установлено, что для прохождения реакции монооксигенирования С2Н6 необходима энергия, источником которой может служить окисленные производные метана или этана (метанол, формиат, этанол). Соответствующие эксперименты показали, что метанотрофы способны расти на этане (неростовой субстрат) в присутствии названных выше дополнительных неростовых субстратов.

Конечные продукты трансформации могут использоваться другими микроорганизмами в сообществе. Конечные продукты кометаболизма сложно прогнозировать, но несколько типов эффектов можно представить: если косубстрат исходно токсичен, то в результате кометаболизма будет происходить его детоксикация. Конечные продукты кометаболизма будут поставлять питательные вещества для каких-нибудь других микроорганизмов и это может привести к большему биологическому разнообразию. Конечные продукты могут быть токсичными для данных продуцентов или других микроорганизмов и результатом этого может быть эффект ингибирования. Конечные продукты кометаболизма могут быть устойчивыми и это может быть результатом увеличения устойчивости конечных продуктов [14].

В целом, процессы кометаболизма изучены недостаточно. Дальнейшее исследование их механизмов имеет не только практическую ценность, но и большое теоретическое значение, поскольку может раскрыть закономерности взаимодействия микроорганизмов с несколькими субстратами [17].

Кометаболизм – важный инструмент при изучении процессов микробиологического разложения ароматических и циклических соединений. Многие виды Pseudomonas, Nocardia, Corynebacterium, Alcaligenes, Mycobacterium, Micrococcus, Cellulomonas, Streptococcus, Flavobacterium, а также микромицетов кометаболизируют ароматические циклические и полициклические углеводороды, высшие полициклические ароматические углеводороды, их алкилзамещенные и другие производные. У одних и тех же микроорганизмов могут функционировать различные механизмы расщепления ароматического кольца, что обусловлено как строением молекулы неростового субстрата, так и условиями культивирования.

Так, Nocardia sp. DSM 43251 осуществляет кометаболизм фенола, изомеров крезола и оксианизола, 3,4-диметилфенола, галогенфенолов, 4-(метилтио)-фенола в присутствии косубстратов - сахарозы, этанола, фумарата. Фенол и монохлорзамещенные производные метаболизируются через путь 1,2-расщепления катехола (катехол-1,2-диоксигеназа); замещенные производные фенола в пара-положении (метокси- или метилтиогруппа) – через путь 2,3- расщепления.

Некоторые нокардии соокисляют n-ксилол и образуют или n-толуиловую кислоту и дигидрокси-п-толуиловую кислоты, или α, α’-диметилмуконовую кислоту в зависимости от рН среды. п-Ксилол трансформируется видами Nocardia двумя путями. Регуляция осуществляется за счет изменения специфичности оксигеназы при изменении рН. При рН 8 функционирует метильная группа оксигеназной системы и образуется п-толуиловая кислота и дигидрокси-п-толуиловая кислоты. При рН 6 метильная группа оксигеназы не функционирует, что приводит к образованию метилзамещенных муконовых кислот путем прямого дигидроксилирования и разрыва бензольного кольца. Иногда п-ксилол окисляется до п-оксиметилбензойной кислоты. Соокисление метил- и этилзамещенных нафталинов клетками Nocardia и Streptomyces, выращенными на гексадекане, приводит к окислению только одного метильного или этильного заместителя до соответствующей карбоновой кислоты. При этом имеет значение стерическое положение метильной группы.

Изучено соокисление циклоалканов. Культура граммотрицательных бактерий при росте на 2-метилбутане соокисляла циклоалканы и циклические моноалкены. Только при соокислении циклопропана происходил разрыв кольца. Соокисление С5-С8- циклопарафинов приводило к накоплению соответствующих эпоксидов, спиртов и кетонов.

Приведенные примеры кометаболизма циклических соединений свидетельствуют о том, что типы реакций превращения этих неростовых субстратов достаточно хорошо изучены. Чаще всего способность кометаболизировать неростовые субстраты объясняется неспецифичностью некоторых ферментов. Если структурно неростовой субстрат подобен ростовому, то чаще всего реакции окисления двух субстратов катализируются одними и теми же ферментами, однако процессы трансформации ростового и неростового субстратов не всегда аналогичны. Например, клетки Arthrobacter продуцируют 2-, 3- и 4-гексадеканон из н- гексадекана при росте на дрожжевом экстракте, при этом обнаружены и соответствующие 2-, 3- и 4-спирты. Глюкоза стимулирует процесс кометаболизма гексадекана. Образование этих продуктов окисления, которые далее не трансформируются, свидетельствует о том, что начальные реакции окисления гексадекана являются результатом неспецифичности ферментов, функции которых не заключаются в окислении углеводородов [17].

Классический пример кометаболизма: окисление этана метаноокисляющими бактериями: образующийся при начальной довольно неспецифической монооксигеназной реакции этанол не метаболизируется далее метилотрофами и может только служить субстратом для других бактерий в данном местообитании. В результате активность окисления этана метаноокисляющей популяцией не увеличивается, пока присутствует метан как дополнительный субстрат [18].

Еще один пример, при разложении древесины легко гидролизуемая целлюлоза (косубстрат) служит источником энергии и электронов для образования Н2О2, с участием которого расщепляется устойчивый к деградации лигнин.

Такие микроорганизмы, как Bacillus cereus SNK 12, Paenibacillus polymyxa SNK 2, Azotobacter chroococcum ANK ΙΙ, Ochrobactrum intermedium ANK Ι cпособны к деградации азобензола в условиях кометаболизма. При этом В.cereus SNK 12 в качестве более доступного источника углерода использует глюкозу, а О. intermedium хризоидин и метиловый оранжевый [19].

Другой пример: кометаболизм флуорена культурами Rhodococcus rhodochrous и Pseudomonas fluorescens. Исследована зависимость интенсивности трансформации флуорена бактериями Rhodococcus rhodochrous 172 при росте на сахарозе и Pseudomonas fluorescens 26K при росте на глицерине от концентрации ростового субстрата и фазы роста культур [20].

Исследования численности и функционирования различных групп бактериобентоса водохранилища вблизи г. Череповца выявили явление кометаболизма. При наличии легкоусвояемых соединений органических веществ, бактериальные сообщества подвергают соокислению трудноминерализуемые соединения сточных вод, таких как полихлорированные бифенилы, полиароматические углеводороды, нефтепродукты, металлы, фенолы, соединения азота, серы и др. вещества [21].

При исследовании кометеболизма винилхлорида и этена у Pseudomonas aeruginosa strain DL1 было обнаружено, что при длительном культивировании (более 40 суток) неростовой субстрат винилхлорид становится ростовым [22].

1.4.     Периодическое культивирование

При внесении бактерий в питательную среду они обычно растут до тех пор, пока содержание какого-нибудь из необходимых им компонентов среды не достигает минимума, после чего рост прекращается. Если на протяжении этого времени не добавлять питательных веществ и не удалять конечных продуктов обмена, то получим периодическую культуру (популяцию клеток в ограниченном жизненном пространстве) [24]. Кривая роста бактериальной культуры показана на рис. 1.5. Кривой роста называется кривая, описывающая зависимость логарифма числа живых клеток от времени. Кривая роста позволяет различить несколько фаз роста, сменяющих друг друга в определенной последовательности.

Лаг-фаза (начальная фаза). Эта фаза охватывает промежуток времени между инокуляцией и достижением максимальной скорости деления. Если инокулят взят из старой культуры (в стационарной фазе роста), то клеткам приходится сначала адаптироваться к новым условиям путем синтеза РНК, образования рибосом и синтеза ферментов. Если источники энергии и углерода в новой среде отличаются от тех, какие были в предшествующей культуре, то адаптация к новым условиям может быть связана с синтезом новых ферментов, которые ранее были не нужны и поэтому не синтезировались. Образование новых ферментов индуцируется новым субстратом. Хорошим примером влияния субстрата на синтез ферментов служит диауксия.

Экспоненциальная фаза характеризуется постоянной максимальной скоростью деления клеток. Эта скорость зависит от вида бактерий и от среды. Величина клеток у многих бактерий остается постоянной. Но нередко клетки периодической культуры претерпевают изменения, так как постепенно изменяется среда: уменьшается концентрация субстрата, увеличивается плотность клеточной суспензии и накапливаются продукты обмена. В связи с тем, что в экспоненциальной фазе скорость деления клеток относительно постоянна, эта фаза наиболее удобна для определения скорости деления (и скорости роста). Изучая влияние факторов среды (рН, температура), а также пригодность различных субстратов, следят за увеличением числа клеток или за мутностью (экстинкцией) клеточной суспензии во время экспоненциального роста.

Стационарная фаза наступает тогда, когда число клеток перестает увеличиваться. Скорость роста зависит от концентрации субстрата – при снижении этой концентрации, еще до полного использования субстрата, скорость роста начинает снижаться. Поэтому переход от экспоненциальной фазы к стационарной происходит постепенно. Скорость роста может уменьшаться также из-за большой плотности бактериальной популяции, из-за низкого парциального давления или накопления токсичных продуктов обмена. Все эти факторы вызывают переход к стационарной фазе.

Фаза отмирания и причина гибели бактериальных клеток в нормальных питательных средах изучены недостаточно. Число живых клеток может уменьшаться экспоненциально. Иногда клетки лизируются под действием собственных ферментов (автолиз) (рис. 5) [24].

1.5.     Периодическое культивирование с подпиткой (fed batch culture)

Термин «периодическая культура с добавлением источников питания» ввели Иошида и др. для обозначения периодической культуры, в которую непрерывно добавляется питательная cреда [25].

Простое периодическое культивирование характеризуется ростом клеток без подачи дополнительных порций субстрата после посева культуры. Лимит субстрата или образование токсичных компонентов могут привести к снижению продуктивности процесса. Для предотвращения негативных последствий лимита субстрата применяется техника культивирования с подпиткой, при этом субстрат или другие необходимые компоненты добавляются либо непрерывно, либо по сигналу от какого-либо датчика [26].

Периодическая культура с добавлением источников питания развивалась эмпирически для некоторых производственных ферментационных процессов, таких, как получение пенициллина, пекарских дрожжей и удаление отходов путем ферментации.

 Для оптимизации выхода продуктов, выделяемых в среду, важно усилить биосинтетическую способность клеток бактерий, а метод культивирования с подпиткой позволяет продлить вторую фазу роста и повысить выход внеклеточных метаболитов. Ограничение скорости поглощения субстрата скоростью его доставки оказывается способом преодоления «катаболитной репрессии» образования продукта. При производстве пекарских дрожжей потребление кислорода регулируется скоростью добавления сахара.

Метод периодических культур с подпиткой использовали при культивировании рекомбинантного штамма Escherichia coli для получения аналога человеческого коллагена. Культура с подпиткой оказалась наиболее эффективным путём для достижения высокой плотности клеток и высокой продуктивности [27].

В периодическом режиме с подпиткой концентрированным субстратом исследовалась деструкция фенола при совершенствовании процесса обезвреживания токсичных стоков ксенобиотиков с использованием гибридной системы очистки с совмещением процесса химического и биологического окисления по месту и времени [28].

Периодическая культура с добавлением источников питания, кроме того, моделирует некоторые природные микробные системы, как, например, инфекцию мочевых путей. Теория такой культуры показывает, что она должна иметь важное и уникальное применение в управлении ферментационными процессами [25].


Глава 2. Материалы и методы

2.1 Условия культивирования

Штамм LPM-4 стерильно пересевали на скошенные косяки ЭДТА-содержащего агара и выдерживали в термостате 5 суток. Для получения инокулята осуществляли смыв культуры с косяков, засевали в жидкую среду с ЭДТА и культивировали 3-4 суток. После чего инокулят в количестве 10 мл переносили в стерильные 750-мл колбы с 200 мл стерильной жидкой среды и культивировали в течение 10 суток на качалке при 150 - 200 об/мин при температуре 28º- 30ºС.

Опыт включал два этапа. Эксперимент первого этапа состоял из 8 вариантов (рис. 6), а эксперимент второго этапа – из 10 вариантов (рис. 7).

Овал: 1
Овал: 3 Овал: 4 Овал: 5 Овал: 6 Овал: 7 Овал: 8
Овал: 2


до посева

 

1 сут

 
Подпись: 6 сут

5 сут

 

4 сут

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.