скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Диагностика отказов системы регулирования уровня в баке

,                       (3.40)

где

                                 (3.41)

Получим численные значения данных передаточных матриц для рассматриваемой линеаризованной системы с отказами (4.96):

,                                  (3.42)

где    ;

;

;

;

;

.

,                     (3.43)

где   ;

;

;

.

3.3.2. Моделирование отказов в Vissime

При моделировании в качестве имитатора реальной системы будем использовать ее нелинейную модель с дополнительно введенными в нее отказами датчиков, исполнительного механизма и объекта управления. Данная модель, созданная в Vissim 5.0 представлена в приложении В.

При моделировании устанавливаются следующие значения вектора входа и начальные значения состояния (3.26):

,   .

Моделирование проводим на временном интервале соответствующем 4 часам.

Рассмотренные типы отказов вводятся в систему по отдельности в момент времени t=2 часа:

1. Отказ датчика уровня h2 : y1(t)=(1-0.2) ∙yR1(t), t>2 часов.

2. Отказ датчика положения х: y3(t)=[1+0.2∙sin(10(t-2))]∙yR3(t), t>2 часов.

3. Утечка в баке 1:

, ,t>2 часов.

, ,t>2 часов.        

4. Отказ задвижки:

, , t>2 часов.

, , t>2 часов.

 5. Отказ исполнительного механизма: uR1(t)=(1+0.2) ∙u1(t), t>2 часов.

Результаты моделирования отказов представлены на рисунках (3.4) – (3.12).

Рис. 3.4. Сигнал y1(t): 1- без отказа, 2 - при отказе датчика уровня h2. 

Рис. 3.5. Сигнал y3(t): 1- без отказа, 2 - при отказе датчика положения х.


Рис. 3.6. Дополнительный поток Qf1(t) утечка в баке 1 (внезапный отказ)

Рис. 3.7. Дополнительный поток Qf1(t) утечка в баке 1 (зарождающийся отказ)

Рис. 3.8. Дополнительный поток Qf2(t), обусловленный отказом задвижки (внезапный отказ)

Рис. 3.9. Дополнительный поток Qf2(t), обусловленный отказом задвижки

Рис. 3.10. Сигнал uR(t): 1 – без отказа, 2 – при отказе исполнительного механизма


3.3.3. Диагностика отказов с помощью наблюдателей состояния

Для решения задачи диагностики с помощью данных наблюдателей будем использовать описание системы с отказами в форме (3.39).

3.3.3.1. Выявление отказов

Для решения задачи выявления отказов выполним формирование рассогласования. Формирование рассогласования будем осуществлять с помощью наблюдателей состояния (см. пункт 2.3.8).

Структура формирователя рассогласования ( рисунок 2.11) математически описывается формулой (2.11):

.

Спроектируем формирователь рассогласования.

Чтобы определить структуру наблюдателя, рассмотрим исследуемую систему в форме (3.26) без отказов f(t)=0.

Для воссоздания переменных системы на основе измерений входов и выходов используется наблюдатель состояния, описываемый следующим образом:

                   (3.44)

где , , матрицы А,В,С равны матрицам системы (3.26).

При проектировании данного наблюдателя выберем параметры матрицы Н из условия обеспечения его устойчивости. Кроме того, при выборе Н учтем, что наблюдатель должен обладать большим быстродействием чем система, переменные состояния которой он восстанавливает. Выберем следующую матрицу Н:

.

В качестве рассогласования (пункт 2.3.8) можно использовать взвешенную величину ошибки оценки входа (We(t)). Пусть матрица весовых коэффициентов рассогласования равна W=I, тогда получим следующий формирователь рассогласования r(t):

                                    (3.45)

где, , ,  , .

Определим требуемые передаточные функции Hu(s) и Hy(s).

Применим преобразование Лапласа к (3.56), полагая при этом, что x(s)|s=0 = 0:

                               (3.46)

Подставив уравнение ошибки e(s) в уравнение состояния (3.58) получим:

.                    (3.47)

С учетом формулы (3.43) и того, что r(s)=We(s) получим:

.                 (3.48)

Передаточная матрица Hy(s) имеет следующий вид:

,                               (3.49)

где   ;

;

;

;

;

;

;

;

.

Передаточная матрица Hu(s) может быть получена следующим образом:

,                               (3.50)

        (3.51)

Проверим, выявляемы ли все рассматриваемые отказы.

Выявляемость отказов

Зная структуру формирователя рассогласования на основе наблюдателя состояния, проверим условие выявляемости отказов вектора f(t).

Реакция вектора рассогласования на возникающий отказ определяется по формуле (2.15). В данном случае:

.                          (3.52)

Для того, чтобы выявить i-ый отказ fi в рассогласовании r(s), i-ая колонка  передаточной матрицы  должна быть не равна нулю  ≠ 0.

Очевидно, что передаточная матрица  не содержит нулевых колонок, поэтому каждый из рассматриваемых отказов датчиков, исполнительного механизма и объекта управления выявляем в рассогласовании r(t).

Кроме того, для всех отказов так же выполняется и строгое условие выявляемости:

 ≠ 0,         i=1…4,                                   (3.53)

так как  не содержит нулевых столбцов.

Таким образом, для выявления всех рассматриваемых отказов достаточно построить формирователь рассогласования с рассмотренной выше структурой (3.57). При воздействии на систему (3.26) любого из отказов вектора f(t) рассогласование r(t)= e(t) будет иметь следующий вид:

,                                (3.54)

где  ошибка оценки состояния изменяется в соответствии с формулой:

.                 (3.55)

Таким образом, ошибка оценки e(t) будет равна нулю только при отсутствии отказов.

Полученный формирователь рассогласования изображен на рисунке 3.11.

Выявление сигналов отказов выполним сравнением сигнала рассогласования с фиксированным порогом, устанавливаемым при отсутствии отказов:

, .                        (3.56)

Пороговые значения для рассогласования, представлены в таблице 3.1.


Таблица 3.1.

Пороговые значения выявления отказов

T1

T2

T3

2e-7 1e-8 1e-16

Рис. 3.11. Выявление отказов с помощью наблюдателя состояния

Моделирование

Моделирование выполняем для рассмотренных в 3.3.2 отказов. Начальные условия для формирователя рассогласования (3.57) установим равными:

.

Реакции рассогласования r(t) на соответствующие отказы изображена на рисунках (3.12) – (3.16).


Рис.3.12. Рассогласования при отказе датчика уровня h2

 

Рис.3.13. Рассогласования при отказе датчика положения х

Рис.3.14. Рассогласования при утечке в баке 1

Рис. 3.15. Рассогласования при отказе задвижки

Рис.3.16. Рассогласования при отказе исполнительного механизма

Как видно из рисунков, рассогласования при отсутствии отказов близки к нулю, а при возникновении любого из отказов значительно увеличиваются. Таким образом, выполняется выявление отказов с помощью наблюдателя состояния. Из рисунков так же видно, что выявление отказов с помощью наблюдателей происходит практически без временной задержки, что является существенным преимуществом их использования.

3.3.4.2. Изоляция отказов

После выявления отказов необходимо выполнить их изоляцию.

Для выявления отказов достаточно одного рассогласования. В нашем случае это рассогласования было получено с помощью формирователя рассогласования на основе наблюдателя состояния. Однако, для изоляции отказов одного рассогласования не достаточно.

Как было описано ранее, с помощью наблюдателей можно выявлять возникающие в системе отказы датчиков и исполнительных механизмов. Сформируем группу рассогласований для изоляции отказов датчиков.

Изоляция отказов датчиков

При условии, что в системе присутствуют только отказы датчиков, выход системы может быть задан следующим образом:

Если нам необходимо выявить только отказы датчиков, то выход системы может быть задан так:

y(s) = Gu(s)u(s) + fs(s),                                (3.57)

где Gu(s) определяется по (3. ), fs(s) - s-преобразование вектора отказов датчиков:

.                                (3.58)

Необходимо спроектировать совокупность сигналов рассогласования, которая позволяла бы изолировать отказы каждого датчика. Для этого, в соответствии с пунктом 2.3.6 можно использовать различные схемы изоляции отказов. Рассмотрим возможность использования схемы наблюдателей Франка. В соответствии с этой схемой, в данном случае, необходимо спроектировать два сигнала рассогласований каждое из которых будет нечувствительно только к одному из отказов датчиков ( отказу датчика уровня h2 или отказу датчика положения х).

Спроектируем сигнал рассогласования чувствительный к отказу первого датчика fs1(s) = [fs1(s); fs2(s)] и не чувствительный к отказу датчика положения fs2(s). Перепишем уравнение (4.69) так:

,                               (3.59)

где y1(s) = [y1(s); y2(s)], y2(s) = y3(s), fs2(s) = fs3(s).

Тогда генератор рассогласования примет следующий вид:

rs1(s) = [rs11(s); rs12(s)] = Hu1(s) u(s)+ Hy1(s)y1(s).                   (3.60)

При подстановке y1(s) в это уравнение получим:

rs1(s) = [Hu1(s) + Hy1(s)G­u(s)]u(s) + Hy1(s)fs1(s).             (3.61)

Рассогласование будет чувствительно только к отказу fs1(s), когда матрицы передаточной функции генератора рассогласования будут удовлетворять следующим условиям:

                         (3.62)

Для рассматриваемой системы (3.26) . При использовании наблюдателя состояния передаточная матрица(см. (3.60)):

связывающая рассогласование и 1 и 2 выходы системы в соответствии с (3.63) так:

,                      (3.64)

где С1 – матрица С , из которой исключена 3 строка, Н1 – соответствующий вектор обратной связи наблюдателя состояния. Следовательно, передаточная матрица Hu1(s) будет иметь вид:

.  (3.65)

При проектировании рассогласования таким образом может быть изолирован отказ первого датчика. Из этих формул видно, что для этого необходимо спроектировать наблюдатель состояния, запускаемый всеми входами системы и всеми, за исключением одного у3(t) выходами. Формирователь рассогласования, построенный на основе такого наблюдателя будет иметь вид:

                              (3.66)

После расчета коэффициентов обратной связи наблюдателя Н1 из условия обеспечения его устойчивости получим следующий формирователь рассогласования:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.