скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Диагностика отказов системы регулирования уровня в баке

В этом случае генератор рассогласования:

r1(s) = Hu1(s) u1(s)+ Hy1(s)y(s).                                              (2.30)

При подстановке y(s) в (4.30) получим:

r1(s) = [Hu1(s)+ Hy1(s) Gu1(s)] u1(s)+ Hy1(s) Gu1(s)fa1(s)+                 

+ H1(s)Gu2(s)[ u2(s)+ fa2(s)].             (2.31)

Чтобы сделать рассогласование чувствительным только к одной группе отказов fa1(s), необходимо выполнение следующих условий:

 Hu1(s)= - Hy1(s) Gu1(s),                                      

Hy1(s) Gu2(s)=0,                                 (2.32)

 Hy1(s) Gu1(s) ≠0.                                                

Эти уравнения иллюстрируют, что для решения задачи изоляции отказов исполнительного механизма требуется дополнительное условие (Hy1(s) Gu2(s)=0). Устойчивая и реализуемая передаточная матрица Hy1(s), удовлетворяющая этим условиям не всегда существует. Поэтому, мы не обладаем полной свободой при выполнении требований в изоляции отказов исполнительного механизма. Следовательно, изоляция отказов исполнительного механизма не всегда возможна.

2.3.7 Техники формирования рассогласования

Центральной проблемой при диагностике отказов с использованием моделей является формирование сигналов рассогласования. Существует большое количество методов формирования рассогласования. Рассмотрим подробнее более распространенные. Большинство методов могут применяться как к непрерывным, так и к дискретным моделям, тем не менее некоторые методы могут применяться только к дискретным моделям.

2.3.7.1. Методы, основанные на использовании наблюдателей

Основная идея данной группы методов формирования рассогласования состоит в оценке выходов системы по измерениям с использованием наблюдателей Люненбергера в детерминированной среде или фильтров Калмана в стохастической среде. Затем в качестве рассогласования используется (взвешенная) ошибка оценки выхода или порожденная случайная величина в стохастическом случае. Данный метод будет рассмотрен подробнее применительно к наблюдателям состояния и наблюдателям при неизвестном входе далее в пункте 2.11.

2.3.7.2. Методы, основанные на оценке параметров

Диагностика отказов с использованием моделей может быть так же выполнена с использованием техник идентификации. Этот метод основан на предположении о том, что отказы являются отражением физических параметров системы таких как сила трения, масса, внутреннее трение, сопротивление, индуктивность, емкость и т.д. основная идея метода выявления отказов заключается в том, что параметры реального процесса оцениваются on-line с использованием широко известных методов оценки параметров. Результаты оценки сравниваются с параметрами эталонной модели, определенной при отсутствии отказов. Любое значительное отличие означает отказ. В этом методе обычно используется математическая модель вход-выход системы в следующей форме:

y(t) = f(P, u(t)),                              (2.33)

где P – вектор коэффициентов модели, непосредственное связанный с физическими параметрами системы. Функция f может быть как линейной так и нелинейной.

Основные этапы диагностика отказов, основанной на оценке параметров таковы:

­     установить модель процесса с использованием физических отношений;

­     определить взаимосвязи между коэффициентами модели и физическими параметрами процесса;

­     оценить нормальные коэффициенты модели;

­     вычислить нормальные физические параметры процесса;

­     определить изменения параметров для различных отказов.

При завершении последнего шага может быть построена база данных отказов и их признаков (симптомов). Во время работы системы периодически необходимо выполнять идентификацию коэффициентов модели системы по измеряемым входам и выходам и сравнивать с нормальными параметрами модели и параметрами с отказами.

Чтобы выполнить генерацию рассогласования в соответствии с этим методом, должен быть использован on-line алгоритм идентификации параметров. Если мы имеем оценку параметров модели на k-1 шаге P’k-1, рассогласование можно определить следующим образом:

                     (2.34)

где Р0 коэффициенты нормальной модели.

Выполнить изоляцию отказов с помощью оценки параметров достаточно трудно. Причиной этого является то, что идентифицированные параметры являются параметрами модели, которые не всегда могут быть преобразованы в физические параметры системы. Тем не менее, отказы представляются вариациями физических параметров.

2.3.8. Формирование рассогласований на основе наблюдателей состояния

Чтобы определить структуру наблюдателя, рассмотрим стационарную линейную динамическую модель исследуемого процесса:

                     (2.35)

где , , .

При предположении, что все матрицы А, В и С точно известны, для воссоздания переменных системы на основе измерений входов и выходов используется наблюдатель состояния:

                    (2.36)

Схема наблюдателя, описываемого уравнением 2.36 изображена на рисунке 2.16.

Из уравнения 2.36 следует, что оценка ошибки состояния eх(t):

                                        (2.37)

Рис. 2.16. Система и наблюдатель состояния

Ошибка оценки состояния eх(t) (и ошибка e(t)) асимптотически уменьшается:

                                                 (2.38)

если наблюдатель устойчив. Обеспечение устойчивости наблюдателя достигается выбором матрицы обратной связи Н.

Система, на которую воздействуют отказы, как было показано ранее (пункт 2.4.), описывается следующим образом:

                 (2.39)

Здесь f(t) – сигналы отказа на входе и выходе, действующие через матрицы  и  соответственно. Они могут представлять аддитивные отказы исполнительного механизма, процесса, входных и выходных датчиков.

Для ошибки оценки состояния выполняются следующие уравнения:

,                 (2.40)

тогда выходная ошибка примет вид:

.                                (2.41)

Вектор f (t), в этом случае, представляет аддитивные отказы, так как они добавляются к e(t) и x(t).

Как видно из уравнения (2.40), при соответствующем выборе параметров матрицы обратной связи наблюдателя Н ошибка оценки состояния при отсутствии отказов асимптотически уменьшается (см. 2.39), а в случае появления внезапных или зарождающихся сигналов отказов f(t) ошибка оценки состояния будет отличаться от нуля. Ошибка оценки выхода e(t), определяемая по формуле (2.41) при возникновении отказов так же будет отлична от нуля.

Ошибки  и  могут быть использованы как рассогласования. В частности, рассогласование  является основой различных методов обнаружения отказов, использующих оценку выхода.

Рис. 2.17. Система с отказами

Если входные и выходные сигналы системы так же подвержены воздействию шума, то вместо классических наблюдателей используются фильтры Калмана.

Если отказы рассматриваются как изменения параметров  или , то поведение системы становится:

                    (2.42)

а ошибки  и :

                (2.43)

Изменения параметров  и  представляют собой мультипликативные отказы.

В этом случае, изменения в рассогласованиях зависят от изменений параметров, так же как и изменения входа и переменных состояния. Следовательно, влияние изменения параметров на рассогласование не такое простое, как в случае аддитивных отказов f(t).

Наблюдатели состояния могут быть использованы для изоляции отказов, при проектировании групп рассогласований или направлений вектора рассогласований. Для отказов датчиков, спроектировать группу рассогласований очень просто. Если нам необходимо сформировать рассогласование чувствительное ко всем отказам датчиков за исключением одного, то наблюдатель формирующий это рассогласование должен возбуждаться всеми выходами за исключением одного. Однако, проектировать группы рассогласований для изоляции отказов исполнительных механизмов труднее. Эта проблема может быть решена с помощью наблюдателей при неизвестном входе и метода распределения собственных чисел. Тем не менее, изоляция отказов исполнительных механизмов не всегда возможна и в этом случае. Фиксирование направления вектора рассогласования может быть выполнено с использованием фильтров выявления отказов.

2.3.9. Формирование рассогласований, не чувствительных к возмущениям и ошибкам линеаризации

Надежность системы диагностики отказов должна быть выше, чем надежность системы, за которой осуществляется мониторинг. Диагностика отказов, основанная на моделях, использует математические модели рассматриваемой системы. Лучшие модели используется для представления динамики системы, при этом случайно улучшая показатели надежности при диагностике отказов. Тем не менее, ошибки моделирования и возмущения в сложных инженерных системах неизбежны, и, следовательно, существует необходимость в создании надежных алгоритмов диагностики отказов. Надежность системы диагностики отказов означает, что эта система должна быть чувствительна только к отказам, даже при наличии отличий модели от реальности (т.е. вариаций параметров и т.д.) Обычно, воздействие вариаций параметров и возмущений на реальный процесс неизвестно, поэтому достаточно трудно спроектировать систему диагностики, которая обладала бы высокой чувствительностью к отказам и при этом была бы не чувствительна к неопределенностям и не моделируемым возмущениям.

Основа диагностики отказов с использованием моделей – формирование рассогласований. Воздействие отказов и неопределенностей на рассогласование различить достаточно трудно. Следовательно, задачей проектирования надежных систем диагностики является  формировании рассогласований, нечувствительных к неопределенностям и, в то же время, чувствительных к отказам, и, следовательно надежных.

Чтобы обобщить проблему надежности, рассмотрим модель системы, содержащую все виды моделируемых неопределенностей, возникающих на практике и воздействующих на поведение системы:

            (2.45)

где d(t) - вектор неизвестного входа (возмущений), матрицы возмущений Е­1 и Е2 принимаются известными. Матрицы ∆А, ∆В, ∆С и ∆D – ошибка параметров или вариации, представляющие ошибки моделирования. В этом случае описание системы в форме передаточной функции имеет вид:

.             (2.46)

где Gd(s)d(s) – представляют эффект возмущений:

,                             (2.47)

Gu(s) используется для описания ошибок моделирования. Составляющие Gd(s)d(s) и ∆Gu(s) вместе представляют моделируемые неопределенности. Если подставить выход системы в уравнение формирования рассогласования (2.11), то получим:

.         (2.48)

Из этого уравнения видно, что и отказы и неопределенности (возмущения и ошибки моделирования) воздействуют на рассогласование, и, поэтому различить их воздействие трудно.

Если рассогласование формируется удовлетворяющим уравнению:

,                                           (2.49)

т.е. возмущения отделены от рассогласования, то рассогласование устойчиво к возмущению. Это – принцип отделения возмущений для формирования надежного рассогласования.

Для ошибок моделирования, представляемых ∆Gu(s), проблема надежности является более сложной. Было предложено два основных способа ее решения. Первый основан на попытке рассмотрения неопределенностей при проектировании рассогласований. Этот метод известен как активная надежность при диагностике. Второй метод называется пассивная надежность при диагностике. Этот метод предполагает использование адаптивного порога на стадии принятия решения.

 

2.4. Наблюдатели при неизвестном входе

Формирование надежных рассогласований является наиболее важной задачей в методах диагностики отказов, основанной на моделях. Методы отделения возмущений – основные методы, позволяющие решить данную задачу. В этих методах, неопределенные факторы моделирования системы рассматриваются как воздействие на неизвестный вход (или возмущения) модели линейной системы. Не смотря на то, что неизвестный входной вектор неизвестен, его матрица распределения принимается известной. На основе информации о матрице распределения, неизвестный вход (возмущение) может быть отделено от рассогласования. Надежная диагностика отказов, следовательно, выполняется с использование отделения рассогласований от возмущений. Проблема формирования надежного рассогласования может быть решена с использованием наблюдателя с неизвестным входом. В этом случае, рассогласование может быть так же отделено от каждого возмущения, так как рассогласование определяется как взвешенная ошибка оценки выхода.

Основными требованиями для наблюдателей при неизвестном входе или для других методов формирования надежного рассогласования является то, что матрица распределения неизвестного входа должна быть априорно известна, благодаря чему не нужно знать сам неизвестный вход. Если неопределенности вызваны возмущениями, то удовлетворить это требование достаточно легко и задача надежной диагностики отказов решается так же легко. Тем не менее, метод отделения возмущений не может быть прямо применен к системе, в которой неопределенности вызваны ошибками моделирования, ошибками линеаризации, вариациями параметров и т.д. Причиной этого является то, что матрица распределения возмущений обычно в этих случаях не известна. Эта проблема затрудняет использование этих надежных методов в диагностике отказов применительно к реальным промышленным системам. Для решения этой проблемы, некоторые исследователи советуют использовать метод оценки матрицы распределения.

2.4.1. Проектирование наблюдателей при неизвестном входе

Будем рассматривать такой класс систем, в котором неопределенности системы могут быть представлены в качестве неизвестной аддитивной составляющей, а динамические уравнения имеют такой вид:

                                         (2.50)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.