скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Расчёт общей и местной вибрации корабля

Курсовая работа: Расчёт общей и местной вибрации корабля

Курсовая работа

"Расчёт общей и местной вибрации корабля"


Содержание

1. Силы, вызывающие вибрацию корпуса судна

1.1 Виды нагрузок, вызывающие вибрацию корпуса судна и его отдельных конструкций

1.2 Нагрузки, вызванные неточностями изготовления механизмов, валопроводов, винтов

1.3 Нагрузки, вызванные работой гребных винтов за корпусом

1.3.1 Нагрузка, передающаяся корпусу через подшипники

2. Местная вибрация корабля. Вибрация набора судового корпуса. Свободные колебания однопролётной свободно опёртой балки

2.1 Расчетная схема

2.2 Исходные данные

2.3 Дифференциальное уравнение свободных колебаний упругой системы

2.4 Общее решение колебаний упругой системы

2.5 Дифференциальное уравнение для форм главных свободных колебаний призматического стержня

2.6 Общий интеграл дифференциального уравнения для форм главных свободных колебаний

2.7 Граничные условия на свободно опёртых концах балки

2.8 Составление уравнений из условий подчинения граничным условиям на левом и правом концах балки

2.9 Система линейных однородных алгебраических уравнений относительно неизвестных постоянных интегрирования

2.10 Определитель системы. Уравнение частот

2.11 Формулы для определения частот свободных колебаний

2.12 Расчет значения частот первых пяти тонов свободных колебаний свободно опертого призматического стержня

2.13 Выражение для определения форм свободных колебаний свободно опёртого призматического стержня

2.14 Расчёт и построение форм первых пяти тонов главных свободных колебаний свободно опёртого призматического стержня

2.15 Расчёт значений частот первых пяти тонов свободных колебаний свободно опёртого призматического стержня с удвоенным по сравнению с заданным значением интенсивности веса балки

2.16 Расчёт значений частот первых пяти тонов свободных колебаний свободно опёртого призматического стержня с удвоенным по сравнению с заданным значением длины балки

2.17 Приведение результатов расчёта значений частот первых пяти тонов свободных колебаний свободно опёртого призматического стержня в сводной таблице

2.18 Сопоставление результатов расчётов. Выводы

3. Местная вибрация корабля. Вибрация судовых пластин. Свободные колебания гибких пластин

3.1 Расчетная схема прямоугольной пластины

3.2 Исходные данные для расчёта свободных колебаний гибких пластин

3.3 Силы упругости, действующие на элемент пластины

3.4 Цилиндрическая жёсткость пластины

3.5 Силы инерции колебательного движения элемента пластины

3.6 Интенсивность нагрузки на пластину от её веса и присоединённых масс воды

3.7 Дифференциальное уравнение свободных колебаний пластины

3.8 Уравнение для определения частот свободных колебаний пластины

3.9 Выражение для формы свободных колебаний пластины

3.10 Общее выражение для определения значений частот свободных колебаний пластины

3.11 Расчёт значения частоты первого тона (n=1; p=1) свободных колебаний пластины при отсутствии действия усилий в срединной плоскости

3.12 Расчёт значения частоты первого тона (n=1; p=1) свободных колебаний пластины при действии усилий в срединной плоскости только в направлении "ox" (4 варианта значения усилий по отношению к заданному значению: 0.5; 1.0; 2.0; 3.0)

3.13 Расчёт значения частоты первого тона (n=1; p=1) свободных колебаний пластины при действии заданных значений усилий в срединной плоскости в направлении "oy" и одновременном действии усилий в срединной плоскости в направлении "ox" (4 варианта значения усилий по отношению к заданным: 0.5; 1.0; 2.0; 3.0)

3.14 Приведение результатов расчётов значений частоты первого тона свободных колебаний пластины в сводной таблице

3.15 Исследование динамической устойчивости пластины: определение значений эйлеровых усилий в направлении оси "ox" из условия, что значение частоты первого тона (n=1; p=1) свободных колебаний пластины равно нулю (как при одновременном действии значений заданных усилий в срединной плоскости в направлении "oy" так и при их отсутствии)

3.16 Сопоставление результатов расчётов. Выводы

4. Общая вибрация корабля. Вибрация корпуса как призматической безопорной свободной балки

4.1 Расчётная схема корпуса корабля как призматической безопорной свободной балки

4.2 Исходные данные для исследования колебаний корпуса корабля однопролётной безопорной призматической балки

4.3 Дифференциальное уравнение свободных колебаний упругой системы

4.4 Общее решение колебаний упругой системы

4.5 Дифференциальное уравнение для форм главных свободных колебаний

4.6 Общий интеграл дифференциального уравнения для форм главных свободных колебаний

4.7 Граничные условия по концам безопорной свободной балки

4.8 Граничные условия для форм свободных колебаний по концам безопорной свободной балки

4.9 Составление уравнений из условий подчинения граничным условиям на левом и правом концах безопорной свободной балки

4.10 Система линейных однородных алгебраических уравнений относительно неизвестных постоянных интегрирования

4.11 Определитель системы. Уравнение частот

4.12 График определения частот свободных колебаний

4.13 Расчёт значения частот первых трёх тонов свободных колебаний корпуса корабля как свободного безопорного призматического стержня

4.14 Выражение для определения форм свободных колебаний корпуса корабля как свободного безопорного призматического стержня

4.15 Расчёт и построение форм первых трёх тонов главных свободных колебаний корпуса корабля как свободного безопорного призматического стержня

4.16 Расчёт значений частоты первого тона свободных колебаний корпуса корабля как свободного безопорного призматического стержня для 5 вариантов значения длины корпуса корабля по отношению к заданному значению: 0.8; 1.0; 1.2; 1.4; 1.6

4.17 Расчёт значений частоты первого тона свободных колебаний корпуса корабля как свободного безопорного призматического стержня для 5 вариантов значения интенсивности веса "q" корпуса корабля по отношению к заданному значению: 0.8; 1.0; 1.2; 1.4; 1.6

4.18 Приведение результатов расчётов значений частоты первого тона свободных колебаний корпуса корабля как свободного безопорного призматического стержня в сводной таблице

4.19 Сопоставление результатов расчётов. Выводы

5. Общая вибрация корабля. Расчёт параметров общей вибрации судового корпуса

5.1. Исходные данные

5.2 Определение частоты свободных вертикальных колебаний первого тона судового корпуса по формуле Шлика

5.3 Определение частоты свободных вертикальных колебаний первого тона судового корпуса по формуле Шлика-Бюрилля

5.4 Определение значений высших частот (второго, третьего и четвёртого тонов) свободных поперечных колебаний судового корпуса по формуле Центрального научно-исследовательского института имени академика А.Н. Крылова

5.5 Расчёт значений высших частот (второго, третьего и четвёртого тонов) свободных поперечных колебаний судового корпуса по рекомендациям Н.Н. Бабаева и В.Г. Лентякова

5.6 Расчёт частоты свободных вертикальных колебаний первого тона судового корпуса по формуле Шлика для 5 вариантов значения длины корпуса корабля по отношению к заданному значению: 0.8; 1.0; 1.2; 1.4; 1.6

5.7 Расчёт частоты свободных вертикальных колебаний первого тона судового корпуса по формуле Шлика для 5 вариантов значения интенсивности веса "q" корпуса корабля по отношению к заданному значению: 0.8; 1.0; 1.2; 1.4; 1.6

5.8 Приведение результатов расчётов значений частоты первого тона свободных колебаний корпуса корабля по формуле Шлика в сводной таблице

5.9 Расчёт частоты свободных вертикальных колебаний первого тона судового корпуса по формуле Шлика-Бюрилля для 5 вариантов значения длины корпуса корабля по отношению к заданному значению: 0.8; 1.0; 1.2; 1.4; 1.6

5.10 Расчёт частоты свободных вертикальных колебаний первого тона судового корпуса по формуле Шлика-Бюрилля для 5 вариантов значения интенсивности веса "q" корпуса корабля по отношению к заданному значению: 0.8; 1.0; 1.2; 1.4; 1.6

5.11 Приведение результатов расчётов значений частоты первого тона свободных колебаний корпуса корабля по формуле Шлика-Бюрилля в сводной таблице

5.12 Сопоставление результатов расчётов значений частоты первого тона свободных колебаний корпуса корабля по формулам Шлика и Шлика-Бюрилля

5.13 Сопоставление результатов расчётов значений частоты первого тона свободных колебаний корпуса корабля как свободного безопорного призматического стержня со значениями, определёнными по формулам Шлика и Шлика-Бюрилля

Литература


1. Силы, вызывающие вибрацию корпуса судна

1.1 Виды нагрузок, вызывающие вибрацию корпуса судна и его отдельных конструкций

Все нагрузки, вызывающие вибрацию корпуса корабля и его отдельных конструкций, целесообразно разделить на четыре вида.

К первому виду отнесем меняющиеся во времени силы, которые появляются вследствие неточностей, допущенных при изготовлении и монтаже судовых механизмов, валопроводов, гребных винтов.

Ко второму виду принадлежат нагрузки, связанные с тем, что гребные винты корабля работают за корпусом и в непосредственной близости от него.

Третий вид нагрузок составляют силы, вызванные воздействием на судно морского волнения.

Наконец, к четвертому виду будем относить различные динамические нагрузки, появляющиеся в специфических условиях эксплуатации судна: при взрывах, ударах о лед, ударах при швартовке и столкновениях и т.п.

1.2 Нагрузки, вызванные неточностями изготовления механизмов, валопроводов, винтов

Одним из основных дефектов, приводящих к появлению вибрационной нагрузки, следует считать неполную сбалансированность вращающихся или движущихся поступательно масс, которая может наблюдаться у главных и вспомогательных двигателей, редукторов, гребных валов и винтов.

При статической неуравновешенности центр тяжести вращающейся части не лежит на оси вращения. Пусть а - отстояние центра тяжести от оси вращения, т - масса, Ω - угловая скорость.

Тогда на ротор действует радиальная (вращающаяся) сила:

F = таΩ2,которая передается на подшипники и фундамент механизма в виде периодической нагрузки.

Рис. 1.1 Динамически неуравновешенный ротор.

На рис.1.1 показан вал с двумя дисками, центры тяжести которых сдвинуты в противоположные стороны от оси вращения на одинаковые расстояния а. Такой ротор статически уравновешен.

Рис. 1.2 Стыкуемые на фланцах участки гребного вала, изготовленные с дефектами.

Если части вала имеют искривления, либо плоскости их фланцев не перпендикулярны к оси (рис.1.2), после соединения фланцев и затяжки болтов на опорах вала возникают реакции, изменяющие направления действия по мере поворота вала

Существование упругого прогиба могут привести к резонансным колебаниям системы винт - валопровод и к резкому возрастанию вибрационной нагрузки на корпус. Поэтому валопроводы всегда проектируются так, чтобы критическая частота была существенно выше любой эксплуатационной частоты вращения вала.

Гребные винты наряду со статической и динамической неуравновешенностью могут быть несбалансированны гидродинамически. Иначе говоря, на гребной винт будут действовать гидродинамическая сила и момент, векторы которых перпендикулярны к оси гребного вала. Вращаясь вместе с винтом, эти сила и момент, передающиеся через подшипники корпусу, создают периодическую нагрузку, изменяющуюся с частотой, равной частоте вращения гребного вала.

Таким образом, статическая и динамическая неуравновешенность роторов, неточность изготовления гребного винта и валопровода приводят к появлению вибрационной нагрузки первого порядка, изменяющейся с частотой вращения вала Q.

При расчете вибрации периодические возмущающие силы и моменты, передаваемые двигателем на фундамент, могут быть представлены в виде суммы гармоник:

где F, M - возмущающие сила и момент;

Ω0 - круговая частота вращения вала двигателя;

αi-, βi - начальные фазы составляющих силы и момента.

Тщательной балансировкой многоцилиндрового поршневого двигателя, устранением неравномерности рабочих циклов в цилиндрах удается свести к минимуму или полностью устранить создаваемую им вибрационную нагрузку низших порядков.

Опрокидывающими моментами и горизонтальными силами не исчерпывается многообразие вибрационных нагрузок, источником которых служат двигатели внутреннего сгорания. Так, неполная сбалансированность движущихся масс приводит к появлению моментов, вращающих двигатель относительно осей вертикальной (рыскание) и поперечной горизонтальной (галопирование). Динамические нагрузки, имеющие случайный характер, создаются в результате неидентичности воспламенения и сгорания топлива в цилиндрах.

1.3 Нагрузки, вызванные работой гребных винтов за корпусом

Действие нагрузок, связанных с работой гребных винтов за корпусом в непосредственной близости от него, представляет собой наиболее существенную причину вибрации судна.

Винт, работающий за корпусом судна, возбуждает два вида вибрационной нагрузки: нагрузку, передающуюся корпусу через подшипники и непосредственно приложенную к обшивке в виде пульсирующих давлений.

1.3.1 Нагрузка, передающаяся корпусу через подшипники

Неоднородность потока, набегающего на винт, создается вследствие нескольких причин, среди которых важнейшую роль играет так называемый попутный поток.

Осевая Vx (направленная вдоль оси гребного вала) и окружная Vt составляющие скорости регулярной части попутного потока могут быть рассчитаны или измерены с использованием I модельного эксперимента.

Осевую составляющую удобно представить в виде суммы:

Vx = v0 + vx,

где v0 - скорость судна; vx - зависящая от координат в плоскости диска винта составляющая осевой скорости.

Пример изменения vx и Vt за один оборот лопасти двухвинтового судна показан на рис.1.3


Рис 1.3 Пример изменения vx/v0 и Vt/v0 за один оборот лопасти.


2. Местная вибрация корабля. Вибрация набора судового корпуса. Свободные колебания однопролётной свободно опёртой балки

2.1 Расчетная схема


Рис.2.1 Расчётная схема однопролётной свободно опёртой балки.

2.2 Исходные данные

Длина

балки

"L",

м

Интенсивность веса балки

"q"

кгс/cм

Модуль упругости

материала

"Е"

МПа

Момент инерции поперечного сечения

"I"

см4

8.2 0.22 210000 6200

2.3 Дифференциальное уравнение свободных колебаний упругой системы

Учитывая даламберовы силы, дифференциальное уравнение свободных колебаний однопролётной балки имеет вид:

 (2.1)

2.4 Общее решение колебаний упругой системы

 (2.2)


2.5 Дифференциальное уравнение для форм главных свободных колебаний призматического стержня

 (2.3)

где

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.