скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Анализ и синтез механизмов

5. Скорость средней точки второй группы Ассура D4 определяем через скорости крайних точек этой группы С и О3.

Скорость точки D4 относительно точки С:


Скорость точки D4 относительно точки О3:

Отрезок  представляет собой вектор скорости точки D4, решаем графически.

Центры тяжести весомых звеньев определяем по свойству подобия.

6. Пользуясь планом скорости, определяем истинные (абсолютные) значения скоростей точек механизма:

7. Определяем абсолютные величины угловых скоростей звеньев:

где lАВ = lАВ∙μl =89,38· 0,005 = 0,4469 м

1.2.2.2 Построение плана ускорения

Исходные данные: 1. Кинематическая схема механизма (1 лист)

2. Угловая скорость ведущего звена

3. План скоростей для заданного положения.

1.   Абсолютное ускорение точки А на конце ведущего звена:

2.   Масштабный коэффициент:

Длина вектора ускорения точки А1:

3.   Ускорение средней точки первой группы Ассура – точки В2 определяем через ускорения крайних точек этой группы А и О2.

Ускорение точки В2 относительно точки А:

Ускорение точки В относительно точки О2:


Величина ускорения Кориолиса определяется по модулю формулой:

Длина вектора, изображающего ускорение Кориолиса на плане ускорений равна:

Для определения направления ускорения Кориолиса вектор относительной скорости  поворачиваем на 90о по направлению угловой скорости .

Из конца вектора  проводим линию действия релятивного ускорения  параллельную звену АВ.

Решаем графически.

4.   По свойству подобия находим на плане ускорения точку С, которая принадлежит звеньям 2 и 4, то есть является крайней точкой второй группы Ассура.

откуда:


5.   Ускорение средней точки второй группы Ассура – точки D4 определяем через ускорения крайних точек этой группы C и О3, причем точка D4 принадлежит звену 4 и совпадает с точкой D5.

Ускорение точки D4 относительно точки С:

Ускорение точки D4 относительно точки О3:

Решаем графически.

Центры тяжести весомых звеньев определяем по свойству подобия

6. Пользуясь планом ускорений, определяем истинные (абсолютные) значения ускорений точек механизма:


7. Определяем абсолютные величины угловых ускорений звеньев:

На этом кинематическое исследование кривошипно-ползунного механизма завершено.


2. Силовой анализ плоско-рычажного механизма

2.1 Определение внешних сил

К звену 5 приложена сила полезного сопротивления FПС, направление которой указано на схеме.

Величина FПС = 1200 Н.

Масса звеньев:

где q = 10 – вес 1 метра длины звена, кг/м

li максимальная длина звена, м.

Определяем массы звеньев:

Собственные моменты инерции звеньев относительно оси, проходящей через центр тяжести:

где - масса звена, кг.

* – длинна звена, м.

Определяем моменты инерции:


Определяем силы веса по формуле:

(Принимаем g=10 м/с2 ускорение свободного падения)

Определяем силы инерции по формуле:

Определяем моменты пар сил инерции по формуле:


Определяем плечи переноса сил по формуле:

Направление внешних сил проставлено на кинематической схеме механизма (лист №1 графической части курсового проекта)

2.2 Определение внутренних сил

2.2.1 Вторая группа Ассура

Структурная группа 2 класса, 2 порядка, 2 модификации.

Изображаем эту группу отдельно. Действие отброшенных звеньев 3 и 0 заменяем силами реакций  и .

В точке О3 на звено 5 действует сила реакции со стороны стойки – , которая перпендикулярна СО3, но неизвестна по модулю и направлению.

В точке С на звено 4 действует сила реакции со стороны звена 2 – , тк величина и направление не известно, раскладываем её на тангенсальную и нормальную.

Линия действия тангенсальной составляющей силы реакции перпендикулярна СD. Величину и направление находим из уравнения моментов сил относительно точки D.


При расчете величина  получилась со знаком (+), т.е. Направление силы выбрано верно.

Векторное уравнение сил, действующих на звенья 4 и 5:

Это векторное уравнение решаем графически, т.е. строим план сил.

Принимаем масштабный коэффициент:

Вектора сил будут равны:

Из плана сил находим:


2.2.2 Первая группа Ассура

Структурная группа 2 класса, 2 порядка, 3 модификации.

Изображаем эту группу отдельно. Действие отброшенных звеньев заменяем силами реакций.

В точке С на звено 2 действует сила реакции со стороны звена 4 – , которая равна по модулю и противоположно направлена найденной ранее силе , т.е. .

В точке О2 на звено 3 действует сила реакции со стороны стойки – , которая известна по точке приложения, перпендикулярна звену АВ и неизвестна по модулю и направлению.

В точке А на звено 2 действует сила реакции со стороны звена 1 – .

Линия действия этой силы неизвестна, поэтому раскладываем её на нормальную и тангенсальную. Величину  находим из уравнения моментов сил относительно точки В.

При расчете величина  получилась со знаком (+), т.е. Направление силы выбрано верно.

Векторное уравнение сил, действующих на звенья 2 и 3:


Это векторное уравнение решаем графически, т.е. строим план сил.

Принимаем масштабный коэффициент:

Вектора сил будут равны:

Из плана сил находим:

2.2.3 Определение уравновешивающей силы

Изображаем ведущее звено и прикладываем к нему все действующие силы. Действие отброшенных звеньев заменяем силами реакций.

В точке А на звено 1 действует сила реакции со стороны звена 2 -, которая равна по величине и противоположна по направлению найденной ранее силе реакции , т.е. .

В точке О1 на звено 1 действует сила со стороны звена 0 – , которую необходимо определить.

Для определения  составим векторное уравнение сил звена 1:


Это векторное уравнение решаем графически, т.е. строим план сил.

Вектора сил будут равны:

Из плана сил находим:

Для уравновешивания звена 1 в точках А и О1 прикладываем уравновешивающие силы –  перпендикулярно звену.

Сумма моментов относительно точки О1:

Знак  – положительный, следовательно, направление силы выбрано, верно.

Уравновешивающий момент:

Построенный силовой анализ кривошипно-ползунного механизма изображен на листе №1 графической части курсового проекта.


2.2.4 Определение уравновешивающей силы методом Н.Е. Жуковского

Для определения уравновешивающей силы методом Н.Е. Жуковского строим повернутый в любую сторону план скоростей. Силы, действующие на звенья механизма, переносим в соответствующие точки рычага Жуковского без изменения их направления.

Плечи переноса сил  и  на рычаге находим из свойства подобия:

Направление плеча переноса  от точки S2 за точку А.

Направление плеча переноса  от точки S4 к точке С.

Уравнение моментов сил, действующих на рычаг относительно полюса:

Уравновешивающий момент:

2.2.5 Определение погрешности.

Сравниваем полученные значения уравновешивающего момента, используя формулу:


Допустимые значения погрешности менее 3% следовательно, расчеты произведены верно.

На этом силовой анализ кривошипно-ползунного механизма закончен.


3. Расчет маховика

3.1 Момент сопротивления движению

Приведенный к валу кривошипа момент сопротивления движению определяем по формуле:

где:  = 1200 Н – сила полезного сопротивления, действует только на рабочем ходу. На холостом ходу  = 0.

w1 = 6,81м/с угловая скорость ведущего звена (кривошипа).

VS5 –скорость выходного звена (ползуна), определенная для 12 положений в первой части курсового проекта.

Значения  для 12 положений механизма сводим в таблицу 5.1.

Таблица 5.1.

w1 1/с

VS5 м/с

 Н

 Нм

 мм

0 6,81 0,000 0 0,00 0,0
1 6,81 1,022 1200 180,13 72,1
2 6,81 0,985 1200 173,67 69,5
3 6,81 0,876 1200 154,35 61,7
4 6,81 0,917 1200 161,71 64,7
5 6,81 1,111 1200 195,81 78,3
6 6,81 1,332 1200 234,79 93,9
7 6,81 1,344 1200 236,85 94,7
8 6,81 0,592 1200 104,37 41,7
9 6,81 -2,691 0 0,00 0,0
10 6,81 -4,533 0 0,00 0,0
11 6,81 -1,202 0 0,00 0,0

3.2 Приведенный момент инерции рычажного механизма

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.