скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Модернизация системы охлаждения двигателя "Газели"

По этим данным построена каплевидная эпюра давлений кольца на стенку цилиндра (рис. 5.2).

Напряжение изгиба кольца в рабочем состоянии:

 МПа           (6.23)

Напряжение изгиба при надевании кольца на поршень:

МПа               (6.24)

Монтажный зазор в замке поршневого кольца:

                    (6.25)

мм

где  мм минимально допустимый зазор в замке кольца во время работы двигателя;

 aк =11·10-6 1/К – коэффициент линейного расширения материала кольца;

 aц =11·10-6 1/К – коэффициент линейного расширения материала гильзы;

 Тк=493 К  – температура кольца в рабочем состоянии;

 Тц =383 К – температура стенок цилиндра;

 То= 293 К – начальная температура.

6.3 Расчет поршневого пальца

Во время работы двигателя поршневой палец подвергается воздействию переменных нагрузок, приводящих к возникновению напряжений изгиба, сдвига, смятия и овализации. В соответствии с указанными условиями работы к материалам, применяемым для изготовления пальцев, предъявляются требования высокой прочности и вязкости. Этим требованиям удовлетворяют цементированные малоуглеродистые и легированные стали

Для расчета принимаем следующие данные:

наружный диаметр пальца dn=25 мм,

внутренний диаметр пальца db=16 мм,

длину пальца ln=80 мм,

длину втулки шатуна =40 мм,

расстояние между торцами бобышек b=44 мм.

Материал поршневого пальца – сталь 15Х, Е=2·105 МПа.

Палец плавающего типа.

Расчет поршневого пальца включает определение удельных давлений пальца на втулку верхней головки шатуна и на бобышки, а также напряжений от изгиба, среза и овализации.

Максимальные напряжения возникают в пальцах дизелей при работе на номинальном режиме.

Расчетная сила, действующая на поршневой палец:

– газовая

МН               (6.26)

где рzmax=рz=6.356 МПа – максимальное давление газов на номинальном

   режиме;

 мм2 – площадь поршня;

– инерционная

МН  (6.27)

где рад/с

– расчетная

МН                  (6.28)

где k =0.82 – коэффициент, учитывающий массу поршневого пальца.

Удельное давление (МПа) пальца на втулку поршневой головки шатуна

МПа                              (6.29)

где  м наружный диаметр пальца;

  м длина опорной поверхности пальца в головки шатуна.

Удельное давление пальца на бобышки

 МПа                   (6.30)

Напряжение изгиба в среднем сечении пальца:

                                               (6.31)

 МПа

где a=dв/dп=0.64 отношение внутреннего диаметра пальца к наружному.

Для автомобильных и тракторных двигателей [ sиз ] = 100 ¸ 250 МПа.

Касательные напряжения среза пальца в сечениях между бобышками и головкой шатуна:

                                         (6.32)

Мпа

Для автомобильных и тракторных двигателей [t] = 60 ¸ 250 МПа.

Максимальная овализация пальца (наибольшее увеличение горизонтального диаметра ∆ dnmax, мм) наблюдается в его средней, наиболее напряженной части:

                             (6.33)

мм

где Е = 2·105 МПа модуль упругости материала пальца.

Напряжение овализации на внешней поверхности пальца:

- в горизонтальной плоскости (точки 1, ψ=0º):

             (6.34)

 МПа

-в вертикальной плоскости (точки 3, ψ=90º):

         (6.35)

МПа

Напряжение овализации на внутренней поверхности пальца:

- в горизонтальной плоскости (точки 2, ψ=0º):

                       (6.36)

МПа;

-в вертикальной плоскости (точки 4, ψ=90º):

                   (6.37)

 МПа.


7. КОНСТРУКТОРСКИЙ РАЗДЕЛ

Конструкторский раздел предназначен для рассмотрения основной задачи данной работы — усовершенствования системы охлаждения двигателя ЗМЗ 406 применяемого на автомобилях ГАЗ 2705, 3221 «ГАЗЕЛЬ» и их модификациях. При этом изменения в двигателе принятые в  тепловом расчете, т.е. форсирование двигателя для повышения его тяговых и скоростных характеристик приняты как перспективные и представляющие интерес с практической, а в данном случае еще и с теоретической  точки зрения. Принимая данные, полученные в тепловом расчете, и учитывая ,что после форсирования двигателя увеличилась мощность нетто, а следовательно тепловой режим стал более напряженным был проведен расчет системы охлаждения.

7.1 Расчет жидкостной системы охлаждения

Модернизируя систему охлаждения двигателя внутреннего сгорания проведем предварительный её расчет согласно материалу, изложенному в      [4]. Однако данный расчет является проверочным и ведётся в первом приближении с тем, чтобы сохранить геометрические, тепловые и иные  параметры основных деталей системы охлаждения максимально унифицируя её с существующей конструкцией в случае доработки. При расчете системы охлаждения двигателя исходной величиной является количество отводимого от него в единицу времени тепла Qω (ккал/ч). Это количество может быть определено из уравнения теплового баланса, или (ориентировочно) на основании экспериментальных данных. В данной работе используем второй вариант, на основании экспериментальных данных, выбирая коэффициенты и эмпирические данные предполагая наиболее напряженный тепловой режим работы.

В качестве циркулирующей охлаждающей жидкости принимаем этиленгликолевую незамерзающую смесь (антифриз).

 Таким образом, количество тепла отводимого от двигателя в единицу времени:

Qω=qωNeN=860∙85,0232∙1,36=99443,135 ккал/ч,                   (7.1)

где  qω=860 ккал/(л.с.∙ч)— количество отводимого от двигателя тепла,

                    для карбюраторных ДВС  обычно qω=830…860 ккал/(л.с.∙ч);

        NeN=85,0232 кВт— наибольшая мощность двигателя.

Находим количество жидкости (кгс/ч), циркулирующей в системе охлаждения в единицу времени,

 кгс/ч                (7.2)

где сω=0,5 ккал/(кгс∙°С)— теплоемкость циркулирующей жидкости;

      =5 °C— разность температур входящей в радиатор и

                                выходящей из него жидкости.

7.2 Расчет радиатора

 Величину поверхности охлаждения радиатора в первом приближении (м2) с достаточной точностью определим по простейшей формуле и сравним с существующей (FД=20 м2):

Fp=fpNNeN=0,17∙85,0232∙1,36=19,66 м2                                     (7.3)

где fpN=0,17 м2/л.с.— удельная поверхность охлаждения радиатора, fpN=0,1…0,23 м2/л.с. для легковых автомобилей.

Как видно из расчетов Fp=19,66м2≈ FД=20м2, относительная разность 2%.

Емкость системы охлаждения оставим прежней, т.е. Vω=12 л.

Примерное количество проходящего через радиатор воздуха:

GL=205∙NeN=205∙85,0232∙1,36=22868 кгс/ч.                            (7.4)

7.3 Водяной насос

 Расчетная производительность водяного насоса:

Gв.н.=Gω/ηв.н.=/0,85=46796,7694 кгс/ч,                   (7.5)

где ηв.н.=0,85— коэффициент, учитывающий возможность прорыва жидкости между крыльчаткой и корпусом насоса.

Необходимая на привод водяного насоса мощность:

 кВт   (7.6)

где Н=7 м вод. ст.— создаваемый насосом напор;

       ηh=0,65 гидравлический КПД;

       ηмех=0,8 — механический КПД водяного насоса.

Учитывая, что параметры рассчитываемого и действительного радиаторов можно принять как равные и принимая существующую емкость системы охлаждения — размеры и форму водяного насоса не рассчитываем.

7.4 Вентилятор

 Для выбора из существующей номенклатуры приближенно определим производительность вентилятора по формуле:

GL=LQQω=0,3∙99443,135=29832,9405 кгс/ч,                                           (7.7)

где LQ=0,3 кгс/ккал удельная производительность вентилятора.

7.5 Описание предлагаемых конструктивных изменений

Далее будет предложен и рассмотрен вариант усовершенствования системы охлаждения рассматриваемого в данной работе двигателя ЗМЗ-406 автомобилей ГАЗ 2705, 3221 «ГАЗЕЛЬ». Описание целей и элементов доработки системы охлаждения двигателя ЗМЗ-406 по пунктам приведены ниже. Основные элементы системы и режимы работы приведены на рис. 20…24.

1. Вместо вентилятора и гидронасоса с механическим приводом от клиноременной передачи принимаются к установке  вентилятор и гидронасос с электроприводом и возможностью регулировки числа их оборотов в зависимости от температуры в системе охлаждения. Цель: возможность частичной регулировки скорости потока воздуха, возможность регулировки скорости потока охлаждающей жидкости, увеличение мощности брутто двигателя за счет отсутствия затрат мощности на привод вентилятора и водяного насоса. Остальные достоинства таких систем смотреть выше в патентном обзоре.

2. Термостат заменяется термоэлектроклапаном с предохранительной пружиной из никель - титанового или иного аналогичного сплава обладающего «памятью» (см. патентный обзор), которая срабатывает когда электроклапан, по каким либо причинам вышел из строя и настроена на срабатывание при наименьшей и наивысшей предельной температурах. Цель: предотвратить эффект «залипания» термостата. Т.к.  при поломке обычный термостат имеет свойство, оставаться в каком либо постоянном (крайнем, либо промежуточном) положении (говорят «залипает»). Кроме того, термоэлектроклапан, вместо классического термостата, позволит более четко и скоординировано организовать работу всех механизмов и приборов системы охлаждения, как между собой, так и с остальными механизмами двигателя посредством ЭБУ, либо бортовой ЭВМ. Магнитное поле создаваемое электроклапаном можно использовать для смягчения воды в случае возникновения ситуации, когда в систему охлаждения приходиться заливать жесткую воду.

3. В магистраль отопителя салона встраивается электромагнитный клапан вместо краника отопителя салона. Цель: более удобный способ включения, выключения отопителя (управление отопителем можно вынести на панель приборов), возможность более качественного автоматического управления прогревом двигателя и салона в зимнее время.

Рис. 20 Циркуляция ОЖ ДВС – Радиатор – Отопитель при Nmax (зимний период)

1- ДВС; 2- датчик числа оборотов коленвала; 3- датчик скорости; 4- отопитель салона; 5- электромагнитный клапан системы отопления салона; 6- включатель – регулятор отопителя; 7- электронасос системы отопления (устанавливается только при наличии второго отопителя в автомобилях с двумя рядами пассажирских сидений и автобусах); 8- головка ДВС; 9- электронный блок управления (ЭБУ) или бортовая ЭВМ; 10- датчик температурного состояния ДВС; 11- датчик температуры охлаждающей жидкости; 12- электромагнитный клапан-термостат; 13- радиатор; 14- электровентилятор; 15- датчик температуры охлаждающей жидкости; 16- электропомпа

При работе двигателя 1 (Рис. 20) в ЭБУ 9 (бортовая ЭВМ) подаются сигналы о его температурном состоянии, датчик 10, а также о температуре охлаждающей жидкости (ОЖ), датчики 11, 15, скорости движения автомобиля, датчик 3 (или спидометр), частоте вращения коленвала, датчик 2, о состоянии отопителя сигнализирует включатель – регулятор температуры в салоне 6. В зависимости от полученных внешних данных, после обработки, из ЭБУ выходят сигналы управления на электровентилятор 14, электропомпу 16, электромагнитные клапаны 12 и 5, электронасос 7 системы отопления (устанавливается только при наличии второго отопителя 4 в фургонах с двумя рядами пассажирских сидений и автобусах). В зависимости от полученных ЭБУ 9 сигналов опишем основные режимы работы системы охлаждения, начиная от пуска двигателя до его работы при максимальных нагрузках.

1. ОЖ циркулирует по кругу ДВС 1 – Радиатор 13 – Отопитель (ли) 4 Рис. 20, максимальная нагрузка, температура в системе охлаждения t°→max, т.е. ≈90°С., клапаны 5, 12 открыты, помпа 16, вентилятор 14, насос 7 (при наличии) включены на полные обороты.

2. ОЖ не циркулирует по ДВС (Рис. 21), например пуск холодного двигателя зимой. Вентилятор 14 (см. Рис. 20), помпа 16, насос 7 — отключены, клапаны 5, 12 — закрыты.

Рис. 21 Работа ДВС без циркуляции ОЖ

3. ОЖ циркулирует по ДВС, t°ОЖ≈65…70 °С, рис.22. Вентилятор 14 (см. Рис. 20), насос 7 отключены, клапаны 5, 12 — закрыты. помпа 16 включена.

Рис. 22 Циркуляция ОЖ по ДВС

4. Циркуляция ОЖ по магистрали ДВС - отопитель (прогрев автомобиля при пуске двигателя в зимний период) рис. 23. Вентилятор 14 (см. Рис. 20),— отключен, клапан 12 — закрыт. Помпа 16, насос 7 (при наличии) включены. Клапан 5 — открыт.

Рис. 23 Циркуляция ОЖ по магистрали ДВС - отопитель

5. Циркуляция ОЖ по магистрали ДВС - радиатор t°≈85…90°С («летний режим») рис. 24. Вентилятор 14 (см. Рис. 20) включается автоматически по потребности, помпа 16—включена, клапан 12 открыт. Насос 7 (при наличии) — отключён. Клапан 5 — закрыт.

Рис. 24

Электронасосы 16, 7 и электровентилятор 14 (Рис. 20) имеют возможность изменять частоту вращения. Функциональная схема регулирования частоты вращения вентилятора, насоса системы охлаждения и отопителя приведена на рис. 25. Температура ОЖ воспринимается терморезистором R1, имеющим отрицательный температурный коэффициент; терморезистор одновременно является одним из звеньев мостовой схемы, куда входят также резисторы R2, R3 и R4.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.