скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыОтчет по практике: Технология пайки изделий при подготовке производства

Отчет по практике: Технология пайки изделий при подготовке производства

Федеральное агентство по образованию

Государственное общеобразовательное учреждение

высшего профессионального образования

Тульский государственный университет

кафедра «Системы автоматического управления»

ТЕХНИЧЕСКИЙ ОТЧЕТ

по технологической ознакомительной практике

База практики «Тульский оружейный завод»

Время практики: с 18.02.2008

по 25.05.2008

Тула, 2008


Содержание

1. Пайка, ее физико-химические особенности, технология и технологические процессы

2. Технологическая классификация способов пайки

3. Технологические и вспомогательные материалы при пайке

3.1 Готовые припои

3.2 Припои, образующиеся при пайке

3.3 Вспомогательные материалы при пайке и их классификация

4. Технологическое оснащение пайки

4.1 Электропечи

4.2 Электронагревательные ванны

4.3 Индукционные нагревательные установки

4.4 Горелки

4.5 Паяльник

5. Заключение. Значение проектирования технологии пайки изделий при подготовке производства

6. Приложение

7. Список литературы


1. ПАЙКА, ЕЕ ФИЗИКО-ХИМИЧЕСКИЕ ОСОБЕННОСТИ, ТЕХНОЛОГИЯ И ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС

Пайкой называется образование соединения с межатомными связями путем нагрева соединяемых материалов ниже температуры их плавления, смачивания их припоем, затекания припоя в зазор и последующей его кристаллизации (ГОСТ 17325—79).

При пайке автономного плавления паяемого материала не происходит, так как процесс осуществляется при нагреве до температуры ниже температуры его солидуса. Однако паяемый металл контактирует с припоем в ином агрегатном (жидком) состоянии. При этом паяемый металл и припой, имеющие/химическое сродство, представляют неравновесную систему, так как на их границе существует градиент концентраций и энергии. Поэтому процессы взаимодействия материалов при пайке связаны с обменом веществом и передачей энергии, происходящими специфическим образом. Такое взаимодействие базируется на взаимодополняющих феноменологических (макроскопических) и микроскопических методах анализа. Важнейшим феноменологическим методом анализа при этом является термодинамика.

Переход термодинамической системы, паяемый материал - припой из весьма неустойчивого лабильного в более стабильное или метастабильное состояние происходит необратимо и состоит из двух стадий: активируемой и самопроизвольной неактивируемой. Энергетическим стимулом первой активируемой стадии перехода системы в более стабильное состояние при постоянном давлении р0 и температуре Т0 служит непрерывное увеличение потенциальной энергии активации на границе двух фаз за счет кинетической энергии, а второй неактивируемой стадии — непрерывное уменьшение термодинамического изобарного потенциала системы (диффузионная стадия).

Переход из одного равновесного состояния в другое с преодолением энергии активации Q происходит через особые неравновесные состояния — активируемые состояния атомов. По гипотезе Аррениуса в 1889 г. для газов, распространенной для твердых и жидких тел В. А. Левичем, в единице объема активируются не все N атомов, а лишь те N0, которые при температуре То обладают избыточной энергией Q:n0 = Ne-QRT, где R газовая постоянная. Энергия активации Q — это потенциальная энергия, которая увеличивается за счет кинетической энергии системы, особенно при эндотермических процессах (например, плавлении). При передаче кинетической энергии в термически активируемом процессе порциями потенциальная энергия также увеличивается в виде флуктуации. Таким образом, активируемое состояние является переходным (промежуточным состоянием) с повышенной потенциальной энергией. Оно возможно не только при поглощении теплоты (эндотермических реакциях), но и при деформации. Активируемые состояния возникают при фазовых переходах первого рода.

К фазовым переходам первого рода относятся фазовые превращения однокомпонентных систем, объем которых при температуре Г0 и давление р0 изменяется скачком и одновременно происходит выделение или поглощение теплоты. К ним относятся равновесные переходы из одного агрегатного состояния в другое, полиморфные превращения, связанные с изменением температуры и давления в процессах диффузии, образования зародышей новых фаз при кристаллизации и распаде твердых растворов и др. Самопроизвольные фазовые переходы первого рода и их изменения по второму закону термодинамики стимулируются условиями dS > 0 и dz < O при постоянных давлении р и температуре t, где S — энтропия; z—термодинамический (изобарный) потенциал.

К фазовым переходам второго рода относятся равновесные превращения однофазовой системы, при которых температура То и давление рo и первые частные производные z равны нулю, но вторые частные производные изменяются скачком (например, температурный коэффициент объемного расширения и сжимаемость). Фазовый переход первого рода происходит самопроизвольно в результате конечных флуктуации местной и общей энергии (энергии активации) на границе контактирующих материалов. При этом степень активации атомов поверхностного слоя жидкой фазы более высокая, чем степень активации атомов контактирующей с ним твердой фазы, вследствие большой подвижности атомов в жидком состоянии.

Наиболее известны две формы движения (процессов) и фазовых переходов (превращений): диффузионное и бездиффузионное. При диффузионных формах движения и фазовых переходов спонтанное перемещение атомов и вакансий происходит статистически, с обменом местами. Такие переходы характерны для контакта веществ в одинаковом агрегатном состоянии. При бездиффузионном движении или переходе перемещение атомов происходит кооперативно (коллективно) за один акт или последовательно за несколько актов, без обмена атомов и вакансий на расстояния, не превышающие межатомные. Следовательно, при контакте паяемого материала с припоем, находящихся в различном агрегатном состоянии, процессы их взаимодействия должны развиваться в две стадии: сначала должна наступить кинетическая (бездиффузионная) активируемая стадия, а потом диффузионная стадия. При этом более равновесное состояние такой системы при смачивании основного материала жидким припоем, вероятнее всего, может быть достигнуто при преодолении относительно высокой энергии активации ВС системы (рис. 1) в результате расплавления твердого металла по кинетическому режиму, т. е. практически по бездиффузионному механизму. Поэтому продуктом первой активирующей стадии должна быть жидкая фаза. Только после этого может наступить диффузионная стадия растворения, т. е. переход атомов паяемого металла из прилежащего к нему расплавленного на первой стадии слоя в остальной объем жидкой фазы (припоя). По расчетам А.А. Шебзухоаа, бездиффузионный этап пайки готовым припоем имеет длительность ~0,01 с. Такой вариант контактного плавления твердых кристаллических веществ в контакте с жидким веществом с тем же типом связи (например, металлом), в отличие от контактно-реактивного плавления двух твердых веществ, был назван контактным твердожндким плавлением, в контакте с паром твердогазовым плавлением.

Вследствие контактного плавления металлических деталей при пайке могут изменяться их форма, размеры и состояние материала. В связи с этим чисто физический разъем паяемого соединения, аналогичный, например, развинчиванию, разъему механических соединений с прокладками, невозможен. Возможны лишь распайка, разъединение по шву в результате плавления при нагреве выше его температуры солидуса, после чего нельзя получить детали в состоянии, аналогичном исходному, так как изменено состояние паяемого металла в местах, смоченных припоем и подвергнутых нагреву при пайке, а также изменены форма и размеры детали. Поэтому паяные соединения деталей не являются разъемными, т. е. такими, форма, размеры, состояние и шероховатость материала которых после разъема не изменяются.

Как известно, под технологией понимают совокупность способов и приемов получения и обработки материалов, заготовки, сборочной единицы или изделия. Последовательность осуществления операций и переходов называется технологическим процессом. Технологический процесс пайки состоит из операций подготовки поверхности паяемого материала и припоя, сборки, собственно пайки, обработки паяного изделия после пайки и контроля качества. В технологическом процессе операции до и после пайки определяются выбранной ее технологией и зависят от конструкции и назначения паяемого изделия, состава и свойств паяемого, технологического и вспомогательного материалов.

Способы пайки объединяют в группы по классификационным признакам: формированию паяного шва (СП1), удалению оксидной пленки (СП2), по источнику нагрева (СПЗ), осуществлению давления на детали (СП4) и по одновременности выполнения паяемых соединений изделия (ГОСТ 17349—79) с соответствующим оснащением, состоящим из нагревательного оборудования и инструмента, оснастки, средств механизации, автоматизации и роботизации. К приемам операции пайки относятся: температурный режим пайки (ТРП), термический цикл пайки (ТЦП), способ введения припоя и контактных прослоек, флюсовых и газовых средств, приложения давления и др.


2. ТЕХНОЛОГИЧЕСКАЯ КЛАССИФИКАЦИЯ СПОСОБОВ

ПАЙКИ

Для осуществления пайки, прежде всего, необходимы припой, его физический контакт с паяемым металлом в жидком состоянии и физико-химическое взаимодействие между ними при заполнении зазора в процессе нагрева по термическому циклу с последующей кристаллизацией паяного шва. В соответствии с этим классификационными признаками первой группы способов пайки (СП1) являются метод получения и полнота расплавления припоя, способ заполнения паяльного зазора припоем и условия кристаллизации паяного шва.

Припой может быть изготовлен заранее (готовый припой), а может образоваться в процессе пайки в результате контактно-реактивного плавления (контактно-реактивный припой), контактного твердогазового плавления (контактный твердогазовый припой), в результате высаживания жидкого металла из компонентов флюса (реактивно-флюсовый припой). В соответствии с этим различают контактно-реактивную пайку, контактную твердогазовую пайку и реактивно-флюсовую пайку.

Появление в технике крупногабаритных тонкостенных узлов с большой площадью пайки все более затрудняло возможность сборки деталей с равномерными капиллярными зазорами между криволинейными поверхностями, что приводило к развитию непропаев, снижению высоты поднятия припоя в зазорах (вертикальных и наклонных) и др. В связи с этим получила развитие композиционная пайка — пайка с композиционным припоем, состоящим из наполнителя и легкоплавкой составляющей, в частности, металло-керамическим припоем.

По характеру затекания припоя в зазор различают капиллярную (ширина зазора <0,5 мм) и некапиллярную (ширина зазора <0,5 мм) пайку. При капиллярной пайке припой заполняет зазор самопроизвольно под действием капиллярных сил.

При некапиллярной пайке использована возможность поднятия жидкого припоя в зазорах под действием гравитации, отрицательного давления в некапиллярном зазоре (при откачке воздуха из зазора), магнитных и электромагнитных и других внешне приложенных сил.

После заполнения зазора припоем паяный шов затвердевает в процессе охлаждения изделия (кристаллизация при охлаждении). При температуре выше температуры солидуса припоя процесс кристаллизации шва может происходить и в результате отвода депрессата или легкоплавкой составляющей припоя из шва (диффузионная пайка).

Жидкий припой смачивает только чистую поверхность паяемого металла. В связи с этим при формировании паяного соединения необходимы условия, обеспечивающие физический контакт паяемого материала и жидкого припоя при температуре пайки. Осуществление такого контакта возможно в местах удаления с поверхности металла оксидных пленок. Удалить оксидные пленки при пайке и осуществить физический контакт конструкционного материала (Мк) с припоем (Мк) можно с применением паяльных флюсов или без них. В последние годы высокие требования по коррозионной стойкости паяных соединений и стремление к сокращению времени технологических операций привели к расширению применения способов бесфлюсовой пайки. Флюсовая пайка наряду с этим остается во многих случаях также широко применяемым процессом. По физическим, химическим и электрохимическим признакам, определяющим процесс удаления оксидов с поверхности основного металла и припоя при пайке, способы пайки объединены в группу СП2.

Способы пайки по источнику нагрева объединены в группу СПЗ. К способам пайки этой группы, применяемым ранее (паяльником, горелкой, электросопротивлением, в печи, погружением в расплавы флюса или припоя, индукционному, электролитному), добавились новые с использованием источников нагрева в виде света, лазера, теплоты химических реакций, потока ионов в тлеющем разряде, инфракрасного излучения, волны припоя, электронного луча, теплоты конденсирования паров и др.

Различают низко- и высокотемпературную пайку. За граничную температуру этих способов принята температура 450 °С. Целесообразность такого деления обусловлена тем, что технологические, вспомогательные материалы и оснащение для низкотемпературной и высокотемпературной пайки обычно существенно отличаются. Классификационным признаком четвертой группы способов пайки СП4 является отсутствие при фиксированном зазоре или наличие давления на паяемые детали с целью обеспечения заданной величины паяльного зазора (прессовая пайка).

Классификационным признаком пятой группы способов СП5 служит одновременность или неодновременность выполнения паяных соединений изделия.

Технологическая классификация способов пайки базируется в основном на альтернативности их признаков. На рис. 2 дана технологическая классификация способов пайки (ГОСТ 17349—79). В наименование способа пайки конкретного изделия должны войти по одному или несколько наименований способов из каждой группы и в том же порядке, в каком они перечислены на рис. 2. Например, «контактно-реактивная капиллярная диффузионная печная пайка в вакууме под давлением».


3. ТЕХНОЛОГИЧЕСКИЕ И ВСПОМОГАТЕЛЬНЫЕ МАТЕРИАЛЫ ПРИ ПАЙКЕ

К технологическим материалам при пайке относятся такие, компоненты которых входят в состав образующегося паяного соединения,— припои и контактные или барьерные покрытия.

По ГОСТ 17325—79 припоем называют материал для пайки и лужения с температурой плавления ниже температуры плавления паяемых материалов. К вспомогательным материалам относятся такие, компоненты которых непосредственно не входят в состав образующегося паяного соединения, но участвуют в его образовании. К ним относятся паяльные флюсы, активные и инертные газовые среды, вещества, ограничивающие растекание припоя (стоп-материалы) и др.

Припои подразделяют на две группы — готовые и образующиеся при работе.

3.1 Готовые припои

Наиболее широкое применение при пайке нашли готовые припои. Готовые припои классифицируют по следующим признакам (ГОСТ 19250—73): по величине их температурного интервала плавления; степени расплавления при пайке; основному или наиболее дефицитному компоненту, способности к самофлюсованию; способу изготовления и виду полуфабрикатов (рис. 3).

Температурный интервал плавления припоя — важнейший классификационный признак. Такой интервал ограничен температурой начала (солидус) и конца (ликвидус) плавления припоя. По температуре конца расплавления припои разделяют на пять классов: особолегкоплавкие (tпл £ 145°С); легкоплавкие (145°С<tпл<450°С); среднеплавкие (450 ° C < 1100 °С); высокоплавкие (1100 °С<tпл< 1850 °С); тугоплавкие (tпл ³ 1850 °С).

Число различных припоев, разработанных к настоящему времени, весьма велико и продолжает непрерывно увеличиваться, что обусловлено повышением требований, предъявляемых к механическим и служебным свойствам паяных соединений, и необходимостью улучшения паяемости существующих и новых материалов.

Классификация готовых припоев по степени их автономного расплавления. По степени автономного расплавления при пайке припои подразделяют на полностью и частично расплавляемые. Ранее применяли главным образом припои, полностью расплавляемые при пайке. Исключение составляли припои, применяемые в стоматологической технике, и частично расплавляемые припои с широким интервалом затвердения, которые использовали главным образом при абразивной пайке.

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.