скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Очистка нефтесодержащих сточных вод

Важно, чтобы угли обладали малой каталитической активностью по отношению к реакциям окисления, конденсации и др., так как некоторые органические вещества, находящиеся в сточных водах, способны окисляться и осмоляться. Эти процессы ускоряются катализаторами. Осмелившиеся вещества забивают поры адсорбента, что затрудняет его низкотемпературную регенерацию. Наконец, они должны иметь низкую стоимость, не уменьшать адсорбционную емкость после регенерации и обеспечивать большое число циклов работы. Сырьем для активных углей может быть практически любой углеродсодержащий материал: уголь, древесина, полимеры, отходы пищевой, целлюлозно-бумажной и других отраслей промышленности.

Адсорбционная способность активных углей является следствием сильно развитой поверхности и пористости. Основы процесса адсорбции. Вещества, хорошо адсорбируемые из водных растворов активными углями, имеют выпуклую изотерму адсорбции, а плохо адсорбирующиеся — вогнутую. Изотерму адсорбции вещества, находящегося в сточной воде, определяют опытным путем.

Скорость процесса адсорбции зависит от концентрации, природы и структуры растворенных веществ, температуры воды, вида и свойств адсорбента. В общем случае процесс адсорбции складывается из трех стадий: переноса вещества и сточной воды к поверхности зерен адсорбента (внешне диффузионная область), собственно адсорбционный процесс, перенос вещества внутри зерен адсорбента (внутри диффузионная область). Принято считать, что скорость собственно адсорбции велика и не лимитирует общую скорость процесса. Следовательно, лимитирующей стадией может быть внешняя диффузия либо внутренняя диффузия. В некоторых случаях процесс лимитируется обеими этими стадиями.

Во внешне диффузионной области скорость массопереноса в основном определяется интенсивностью турбулентности потока, которая в первую очередь зависит от скорости жидкости. Во внутри диффузионной области интенсивность массопереноса зависит от вида и размеров пор адсорбента, от форм и размера его зерен, от размера молекул адсорбирующихся веществ, от коэффициента массопроводности.

Учитывая все эти обстоятельства, определяют условия, при которых адсорбционная очистка сточных вод идет с оптимальной скоростью. Процесс целесообразно проводить при таких гидродинамических режимах, чтобы он лимитировался во внутри диффузионной области, сопротивление которой можно снизить, изменяя структуру адсорбента, уменьшая размеры зерна. При значениях w и d меньше указанных, процесс лимитируется по внешне диффузионной области, при больших значениях — во внутри диффузионной.

Адсорбционные установки. Процесс адсорбционной очистки сточной воды ведут при интенсивном перемешивании адсорбента с водой, при фильтровании воды через слой адсорбента или в псевдосжиженном слое на установках периодического и непрерывного действия. При смешивании адсорбента с водой используют активный уголь в виде частиц 0,1 мм и меньше. Процесс проводят в одну или несколько ступеней.

Статическая одноступенчатая адсорбция нашла применение в тех случаях, когда адсорбент очень дешев или является отходом производства. Более эффективно (при меньшем расходе адсорбента) процесс протекает при использовании многоступенчатой установки. При этом в первую ступень вводят столько адсорбёнта, сколько необходимо для снижения концентрации загрязнений, затем адсорбент отделяют отстаиванием или фильтрованием, а сточную воду направляют во вторую ступень, куда вводят свежий адсорбент. По окончани процесса адсорбции во второй ступени концентрация загрязнений в воде уменьшается от C1 до С2 и т. д.

В динамических условиях процесс очистки проводят при фильтровании сточной воды через слой адсорбента. Скорость фильтрования зависит от концентрации растворенных веществ и колеблется от 2—4 до 5—6 м3/(м2-ч). Вода в колонне движется снизу вверх, заполняя все сечение. Адсорбент применяют в виде частиц размером в пределах 1,5—5 мм. При более мелких зернах возрастает сопротивление фильтрованию жидкости. Уголь укладывают на слой гравия, расположенного на решетке. Во избежание забивки адсорбента сточная вода не должна содержать твердых взвешенных примесей.

В одной колонне при неподвижном слое угля процесс очистки ведут периодически до проскока, а затем адсорбент выгружают и регенерируют. При непрерывном процессе используют несколько колонн. По такой схеме две колонны работают последовательно, а третья отключена на регенерацию. При проскоке в средней колонне на регенерацию отключают первую колонну.

В момент проскока в колонне появляется слой адсорбента, который не работает. Этот слой называют «мертвым» слоем. Если одновременно выводить из колонны «мертвый» слой и вводить в нее такой же слой, свежего адсорбента, то колонна будет работать непрерывно. Для подачи адсорбента имеются специальные дозаторы.

Установки с псевдосжиженным слоем (периодического или непрерывного действия) целесообразно применять при высоком содержании взвешенных веществ в сточной воде. Размер частиц адсорбента при этом должен быть равным 0,5—1 мм. Скорость потока для частиц указанных размеров находится в пределах, 8—12 м/ч.

Регенерация адсорбента. Важнейшей стадией процесса адсорбционной очистки является регенерация активного угля. Адсорбированные вещества из угля извлекают десорбцией насыщенным или перегретым водяным паром либо нагретым инертным газом. Температура перегретого пара при этом (при избыточном давлении 0,3—0,6 МПа) равна 200—300 °С, а инертных газов 120—140 °С. Расход пара при отгонке легколетучих веществ равен 2,5—3 кг на 1 кг отгоняемого вещества, для высококипящих - в 5—10 раз больше. После десорбции пары конденсируют вещество извлекают из конденсата.

Для регенерации углей может быть использована и экстракция (жидкофазная десорбция) органическими низкокипящими и легко перегоняющимися с водяным паром растворителями. При регенерации органическими растворителями (метанолом, бензолом, толуолом, дихлорэтаном и др.) процесс проводят при нагревании или без нагревания. По окончании десорбции остатки растворителей из угля удаляют острым паром или инертным газом. Для десорбции адсорбированных слабых органических электролитов их переводят в диссоциированную форму. При этом ионы переходят в раствор, заключенный в. порах угля, откуда их вымывают горячей водой, раствором кислот (для удаления органических оснований) или раствором щелочей (для удаления кислот).

В некоторых случаях перед регенерацией адсорбированное вещество путем химического превращения переводят в другое вещество, которое легче извлекается из адсорбента. В том случае, когда адсорбированные вещества не представляют ценности, проводят деструктивную регенерацию химическими реагентами (окислением хлором, озоном или термическим путем). Термическую регенерацию проводят в печах различной конструкции при температуре 700—800 °С в бес кислородной среде. Регенерацию ведут смесью продуктов горения газа или жидкого топлива и водяного пара. Она связана с потерей части адсорбента (15—20%). Разрабатываются биологические методы регенерации углей, при которых адсорбированные вещества биохимически окисляются. Этот способ регенерации значительно удлиняет срок использования сорбента.

1.3      Химическая очистка

К химическим методам очистки сточных вод относят нейтрализацию, окисление и восстановление. Все эти методы связаны с расходом различных реагентов, поэтому дороги. Их применяют для удаления растворимых веществ и в замкнутых системах водоснабжения. Химическую очистку проводят иногда как предварительную перед биологической очисткой или после нее как метод доочистки сточных вод.

Нейтрализация. Сточные воды, содержащие минеральные кислоты или щелочи, перед сбросом их в водоемы или перед использованием в технологических процессах нейтрализуют. Практически нейтральными считаются воды, имеющие рН = 6,5 - 8,5.

Нейтрализацию можно проводить различным путем: смешением кислых и щелочных сточных вод, добавлением реагентов, фильтрованием кислых вод через нейтрализующие материалы, адсорбцией кислых газов щелочными водами или адсорбцией аммиака кислыми водами. Выбор метода нейтрализации зависит от объема и концентрации сточных вод, от режима их поступления, наличия и стоимости реагентов. В процессе нейтрализации могут образовываться осадки, количество которых зависит от концентрации и состава сточных вод, а также от вида и расхода используемых реагентов.

Нейтрализация смешением. Этот метод применяют, если на одном предприятии или на соседних предприятиях имеются кислые и щелочные воды, не загрязненные другими компонентами. Кислые и щелочные воды смешивают в емкости с мешалкой и без мешалки. В последнем случае перемешивание ведут воздухом при его скорости в линии подачи 20 - 40 м/с.

При переменной концентрации сточных вод в схеме предусматривают установку усреднителя или обеспечивают автоматическое регулирование подачи в камеру смешения. Расчет соотношения сточных вод, направляемых в камеру смешения, проводят по стехиометрическим уравнениям.

При избытке кислых или щелочных сточных вод добавляют соответствующие реагенты. Нейтрализованную воду используют в производстве, а осадок обезвоживают на шламовых площадках или вакуум-фильтрах.

Нейтрализация путем добавления реагентов. Для нейтрализации кислых вод могут быть использованы: NaOH, КОН, Na2CO3, NH4OH (аммиачная вода), СаСО3, MgCO3, (СаСОз-MgCO2), цемент. Однако наиболее дешевым реагентом является гидроксид кальция (известковое молоко) с содержанием активной извести Са(ОН)2 5—10%. Соду и гидроксид натрия следует использовать, если они являются отходами производства. Иногда для нейтрализации применяют различные отходы производства. Например, шлаки сталеплавильного, феррохромового и доменного производств используют для нейтрализации вод, содержащих серную кислоту.

Окисление и восстановление. Для очистки сточных вод используют следующие окислители: газообразный и сжиженный хлор, диоксид хлора, хлорат кальция, гипохлориты кальция и натрия, перманганат калия, бихромат калия, пероксид водорода, кислород воздуха, пероксосерные кислоты, озон, пиролюзит и др.

В процессе окисления токсичные загрязнения, содержащиеся в сточных водах, в результате химических реакций переходят в менее токсичные, которые удаляют из воды. Очистка окислителями связана с большим расходом реагентов, поэтому ее применяют только в тех случаях, когда вещества, загрязняющие сточные воды, нецелесообразно, или нельзя извлечь другими способами. Например, очистка от цианидов, растворенных соединений мышьяка и др.

Активность вещества как окислителя определяется величиной окислительного потенциала. Из всех известных в природе окислителей первое место занимает фтор, который, однако, из-за высокой агрессивности не может быть использован на практике. Для других веществ величина окислительного потенциала равна: для озона - 2,07; для хлора - 0,94; для пероксида. водорода - 0,68; для перманганата калия - 0,59.

Окисление хлором. Хлор и вещества, содержащие «активный» хлор, являются наиболее распространенными окислителями. Их используют для очистки сточных вод от сероводорода, гидросульфида, метилсернистых соединений, фенолов, цианидов и др. При введении хлора в воду образуются хлорноватистая [оксохлорат водорода] и соляная (хлороводородная) кислоты:

В присутствии аммонийных соединений в воде образуется хлорноватистая кислота, хлорамин NH2C1 и дихлорамин NHC12. Хлор в виде хлорамина называется связанным «активным» хлором.

Процесс хлорирования проводят в хлораторах периодического и непрерывного действия, напорных и вакуумных. Хлорирование проводится в емкости, включенной в систему циркуляции. В инжекторе газообразный хлор захватывается сточной водой, циркулирующей в системе до тех пор, пока не: будет достигнута заданная степень окисления, после чего вода выводится для использования.

При обезвреживании вод от цианидов процесс проводят в щелочной среде (рН = 9). Цианиды можно окислить до элементного азота и. диоксида углерода

Источниками «активного» хлора могут быть также хлорат кальция, гипохлориты, хлораты, диоксид хлора. Хлорат кальция (хлорную известь) получают при взаимодействии:

Са(ОН)2+С12 = СаОС12+Н2О

Товарный хлорат кальция содержит до 33% «активного» хлора, а гипохлорит кальция — до 60%.

Окисление пероксидом водорода. Пероксид водорода является бесцветной жидкостью, в любых соотношениях смешивается с водой. Она может быть использована для окисления нитритов, альдегидов, фенолов, цианидов, серосодержащих отходов, активных красителей. Промышленность выпускает 85 — 95%-ный пероксид водорода и пергидроль, содержащий 30% Н2О2. Пероксид водорода токсичен. ПДК в воде составляет 0,1 мг/л.

В кислой среде более отчетливо выражена окислительная, функция, а в щелочной восстановительная.

В кислой среде пероксид водорода переводит соли двухвалентного железа в соли трехвалентного, азотистую кислоту — в азотную, сульфиды — в сульфаты. Цианиды в цианаты окисляются в щелочной среде (рН = 9 - 12).

В разбавленных растворах процесс окисления органических веществ протекает медленно, поэтому используют катализаторы — ионы металлов переменной валентности (Fe2+, Cu2+,. Mn2+, Co2+, Cr2+, Ag+). Например, процесс окисления пероксидом водорода с солью железа протекает весьма эффективно при: рН=3-4,5. Продуктами окисления являются муконовая и малеиновая кислоты.

Разрушение цианидов под действием пероксосерных кислот протекает также очень быстро. При этом в случае небольших концентраций цианидов (0,01—0,05%) в сточной воде используют H2SO3, а при высоких концентрациях — H2S2O3- Оптимальным условиям соответствует рН = 9. В нейтральной среде реакция окисления резко замедляется под действием ионов железа, которые образуют ферроцианы, не подвергающиеся окислению. Окисление, кислородом воздуха.

Кислород воздуха используют при очистке воды от железа для окисления соединений двухвалентного железа в трехвалентное с последующим отделением от воды гидроксида железа.

Окисление проводят при аэрировании воздуха через сточную воду в башнях с хордовой насадкой. Образующийся гидроксид железа отстаивают в контактном резервуаре, а затем отфильтровывают. Возможен процесс упрощенной аэрации. В этом случае над поверхностью фильтра разбрызгивают воду, которая в виде капель падает на поверхность фильтрующей загрузки. При контакте капель воды с воздухом происходит окисление железа.

Кислородом воздуха окисляют также сульфидные стоки целлюлозных, нефтеперерабатывающих и нефтехимических заводов. Процесс окисления гидросульфидной и сульфидной серы протекает через ряд стадий при изменении валентности серы с -2 до +6:

При этом при окислении гидросульфида и сульфида до тиосульфата рН раствора повышается, при окислении гидросульфида до сульфида и сульфата рН раствора понижается, а при окислении сульфида до сульфита и сульфата активная реакция среды не изменяется.

С повышением температуры и давления скорость реакции и глубина окисления сульфидов и гидросульфидов увеличивается. Теоретически на окисление 1г сульфидной серы расходуется 1г кислорода.

Процесс проводят фильтрацией сточной воды через этот материал или в аппаратах с мешалкой. Пиролюзит является природным материалом, состоящим в основном из диоксида марганца. Его широко используют для окисления трехвалентного мышьяка в пятивалентный:

Повышение температуры способствует увеличению степени окисления. Оптимальный режим окисления следующий: расход МnО2 четырехкратный по сравнению со стехиометрическим, кислотность воды 30—40 г/л, температура воды 70—80 °С.

Удаление ионов тяжелых металлов. Во многих отраслях промышленности перерабатывают или применяют различные соединения ртути, хрома, кадмия, цинка, свинца, меди, никеля, мышьяка и другие вещества, что ведет к загрязнению ими сточных вод.

Для удаления этих веществ из сточных вод в настоящее время наиболее распространены реагентные методы очистки,. сущность которых заключается в переводе растворимых в воде веществ в нерастворимые при добавлении различных реагентов с последующим отделением их от воды в виде осадков. Недостатком реагентных методов очистки является безвозвратная потеря ценных веществ с осадками.

В качестве реагентов для удаления из сточных вод ионов тяжелых металлов используют гидроксиды кальция и натрия,. карбонат натрия, сульфиды натрия, различные отходы, например феррохромовый шлак, который содержит (в %): СаО - 51,3; MgO - 9,2; SiO2 - 27,4; Cr2O3 - 4,13; А12О3 - 7,2; FeO - 0,73. Наиболее широко используется гидроксид кальция. Осаждение металлов происходит в виде гидроксидов. Процесс прово­дится при различных значениях рН.

Значения рН, соответствующие началу осаждения гидроксидов различных металлов и полному осаждению,. зависят от природы металлов, концентрации их в растворе, температуры, содержания примесей. Например, при совместном осаждении двух или нескольких ионов металлов при рН = const достигаются лучшие результаты, чем при осаждении каждого из металлов в отдельности. При этом образуются смешанные кристаллы и происходит адсорбция на поверхности твердой фазы ионов металлов, благодаря чему достигается более полная очистка от некоторых металлов.

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.