скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Механизм поперечно-строгального станка

3.         Поделим второе уравнение на первое:

4.         Передаточное отношение U31:

5.         Передаточная функция ускорений U’31:

6.         Угловая скорость кулисы:

7.         Угловое ускорение кулисы:


8.         Уравнение замкнутости верхнего контура в проекциях на оси:

                                                                     (1)

9.         Решая совместно два уравнения находим sinφ4:

10        . Дифференцируем уравнения (1) по параметру φ1:

                                                                (2)

где  и  - соответствующие передаточные отношения.

11.          Передаточное отношение U43 и угловая скорость ω4:

12.         Передаточное отношение U53:


13.         Дифференцируем уравнение по параметру φ3:

                        (3)

где  и

14.         Из второго уравнения системы (3) определяем U’43:

15.         Из первого уравнения системы (3) находим U’53:

16.          Скорость и ускорение точки С выходного звена:

1.9 Расчет на ЭВМ

Program kulise1;

User crt;

Const

h=0.;

l0=0.456;

l1=0.143;

shag=30;

w1=7.33;

a=0.270;

var

f1, w3, e3, vb, ab, u53, u53_, u31_:real;

cosf3, tgf3, sinf3: real;

begin

write (`,Введите угол в градусах`);

read(f1);

repeat

w3:=w1*((sqr(l1)+l0*l1*sin(f1))/(sqr(l1)+sqr(l0)+2*l0*l1-*sin(f1)));

u31_;=l0*l1*cos(n)*(sqr(l0)-sqr(l1))/(sqr(sqr(l1)+sqr(l0)+2*l0*l1*sin(f1)));

E3:=sqr(w1)*u31_;

cosf3:=sqrt((sqr(l1)*sqr(cos(f1)))/(sqr(l1)+sqr(l0)+2*l0*l1*sin(f1)));

tgf3:=(l0+l1*sin(f1))/(l1*cos(f1));

sinf3:=tgf3/sqrt(1+sqr(tgf3));

u53:=-(a/(sqr(sinf3)));

u53_:=(2*a*cosf3)/(sqr(sinf3)*sinf3);

Ab:=sqr(w3)*u53_+E3*u53;

Writeln(`’Скорость Vb=`, Vb=`,Vb:3:4);

Writeln(`’Ускорение Ab=`, Ab=`,Vb:3:4);

Decay(10000)

Writein;

F1:=F1+Shag;

Until F1>=

End.

Положения Скорости Ускорения
0 0 76,6
1 35,963 49,8936
2 63,5161 30,9
3 80,1509 18,5649
4 86,5 0
5 85,3494 -7,3299
6 77,2378 -14,32
7 56,7787 -63,818
8 0 200,7
9 -132,198 -273,396
10 -260 0
11 -94,5398 272,2544

Планы скоростей и ускорений:

Рис. 3 – Диаграмма скоростей


Рис. 4 – Диаграмма ускорений


2 Силовой анализ механизма

Исходные данные:

вес кулисы  кг;

вес шатуна кг;

вес ползуна кг.

2.1 Силы тяжести и силы инерции

Силы тяжести:

 Н

 Н

 Н

Силы инерции:

Н

Н

Н

Н м

мм


2.2 Расчет диады 4-5

Для расчета этой диады изобразим ее со всеми приложенными к ней силами: силами тяжести, полезного сопротивления и реакциями.

Эти реакции в поступательных парах известны по направлению, но неизвестны по модулю. Определяем с помощью плана сил. Составим уравнение равновесия диады 4-5.

Строим план сил диады в масштабе сил

Уравнение содержит три неизвестных, поэтому составляем дополнительное уравнение равновесия в форме моментов сил относительно точки С.


Рассчитаем вектора сил

Строим план сил по уравнению сил, в том порядке как силы стояли в уравнении.

Значения сил из плана сил

Для рассмотрения внутренних реакций в диаде 4-5 необходимо рассмотреть равновесие одного звена, звена 4.

2.3 Расчет диады 2-3

Изобразим диаду со всеми приложенными к ней силами. В точках А и О2 взамен отброшенных связей прикладываем реакции и . В точке В прикладываем ранее найденную реакцию. Составляем уравнение равновесия диады 2-3.

Плечи измеряем на плане. Теперь в уравнении сил две неизвестных, поэтому строим план сил и определяем реакцию, как замыкающий вектор.

Строим план диады в масштабе сил . Значения сил из плана сил.

2.4 Расчет кривошипа

Изобразим кривошип с приложенными к нему силами и уравновешивающей силой , эквивалентной силе действия на кривошип со стороны двигателя. Действие отброшенных связей учитываем вводя реакции  и . Определяем уравновешивающую силу, считая, что она приложена в точке А кривошипа, перпендикулярно ему. Составляем уравнение равновесия кривошипа.

Значение силы определяем из плана сил.

2.5 Определение уравновешивающей силы методом Жуковского

Строим повернутый на 900 план скоростей и в соответствующих точках прикладываем все внешние силы, включая и силы инерции. Составим уравнение моментов относительно точки , считая  неизвестной:

Подлинность графического метода:

2.6.     Определение мощностей

Потери мощности в кинематических парах:

Потери мощности на трение во вращательных парах:

где - коэффициент

- реакция во вращательной паре,

- радиус цапф.


Суммарная мощность трения

Мгновенно потребляемая мощность

Мощность привода, затрачиваемая на преодоление полезной нагрузки.

2.7 Определение кинетической энергии механизма

Кинетическая энергия механизма равна сумме кинетических энергий входящих в него массивных звеньев.


Приведенный момент инерции


3 Геометрический расчёт эвольвентного зубчатого зацепления. Синтез планетарного редуктора

3.1 Геометрический расчёт равносмещённого эвольвентного зубчатого зацепления

Исходные данные:

число зубьев шестерни: Z=14

число зубьев колеса: Z=28

модуль зубчатых колёс: m=4мм

Нарезание зубчатых колес производится инструментом реечного типа, имеющего параметры:

- коэффициент высоты головки зуба

- коэффициент радиального зазора

- угол профиля зуба рейки

Суммарное число зубьев колёс:

 поэтому проектирую равносмещённое зацепление.

Делительно-межосевое расстояние:

 мм

Начальное межосевое расстояние:  мм

Угол зацепления:

Высота зуба:

 мм

Коэффициент смещения:

Высота головки зуба:

 мм

 мм

Высота ножки зуба:

 мм

 мм

Делительный диаметр:

 мм

 мм

Основной диаметр:


 мм

 мм

Диаметры вершин:

 мм

 мм

Диаметр впадин:

 мм

 мм

Толщина зуба:

 мм

 мм

Делительный шаг:

 мм

Основной шаг:

 мм

Радиус галтели:


 мм

Коэффициент перекрытия:

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.