скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB

Дипломная работа: Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB

ВВЕДЕНИЕ

При подготовке специалистов по всем электротехническим и электроэнергетическим специальностям важное место занимает курс электрических машин.

На сегодняшний день подготовка грамотных специалистов невозможна без применения новых форм обучения с использованием компьютерных технологий, базирующихся на современных прикладных программных продуктах.

Владение теорией электрических машин является высокой составляющей профессиональной подготовки специалиста по электрическим машинам и системам электроприводов. Современные компьютерные технологии позволяют качественно изменить и существенно улучшить технологию изучения электрических машин, перевести её в виртуальную действительность, осуществить в этой виртуальной лаборатории исследования статических и динамических режимов работы электрических машин, их механических характеристик, условий пуска и технико-экономических показателей с получением количественных результатов.

Для грамотного использования компьютерных технологий при исследовании электрических машин необходимо хорошо знать и понимать физические процессы, протекающие в электрических машинах; знать уравнения, описывающие работу электрической машины; уметь рассчитать параметры для построения математических моделей. Использование компьютерных технологий позволит расширить круг и глубину изучаемых вопросов, провести множество экспериментов с использованием виртуальных электрических машин, что благотворно скажется на уровне подготовки специалистов.

В данной работе необходимо разработать и создать виртуальные лабораторные работы для изучения асинхронных двигателей с короткозамкнутым и фазным роторами и исследовать в них переходных процессы, пусковые свойства, естественные и искусственные механические, а также рабочие характеристики. Поставленная задача реализована в наглядном и эффективном средстве визуального программирования моделей – пакете Simulink программы MATLAB.

Разрабатываемые виртуальные лабораторные работы будут намного превосходить по техническим и экономическим возможностям реальную физическую лабораторную установку. В созданных виртуальных лабораторных работах будет иметь место широчайший спектр возможностей по исследованию асинхронной машины в различных режимах работы, что в реальной лаборатории требует больших финансовых расходов из-за дороговизны необходимого оборудования.

В полученных виртуальных лабораторных работах появится возможность исследования переходных процессов в асинхронном двигателе, снятия рабочих и искусственных механических характеристик при различных значениях добавочного сопротивления в цепи ротора, напряжения и частоты питающей сети.

Большим плюсом разрабатываемых лабораторных работ является то, что виртуальную лабораторию можно использовать в дистанционном обучении студентов и в различных учебных заведениях, где нет возможности поработать в реальной лаборатории. Единственное, что необходимо для работы виртуальной лаборатории, это наличие персонального компьютера, который в наше время является общедоступным и имеется в каждом учебном заведении.


1. СИСТЕМА MATLAB

1.1 История появления MATLAB

Система MATLAB разработана специалистами компании MathWork Inc. (г. Нейтик, штат Массачусетс, США). Хотя впервые эта система начала использоваться в конце 1970-х годов, широкое распространение она получила в конце 80-х, в особенности после появления на рынке версии 4.0. Последние версии MATLAB -это системы, которые содержат множество процедур и функций, необходимых инженеру и научному работнику для осуществления сложных численных расчетов, моделирования технических и физических систем и оформления результатов этих расчетов. MATLAB (сокращение от MATrix LABoratory - матричная лаборатория) представляет собой интерактивную систему, предназначенную для выполнения инженерных и научных расчетов и ориентированную на работу с массивами данных.

В последние годы в научных и инженерно-технических кругах получила широкое распространение система MATLAB. Более того, в настоящее время она принята в качестве официального средства оформления инженерной документации и научных публикаций. Система MATLAB специально создана для проведения именно инженерных расчетов: математический аппарат, который используется в ней, предельно приближен к современному математическому аппарату инженера и ученого. Функциональные зависимости здесь организованы в форме, которую требует именно инженерная документация.

1.2 Место MATLAB среди математических программ

У системы MATLAB есть схожие черты с программами MathCad и Electronics Workbench.

Так с MathCad её роднит то, что в обои системах имеются широкие возможности по выполнению вычислений, производимых с матрицами, векторами и комплексными числами, а также графическое представление полученных результатов. Отличительной чертой является входной язык, максимально приближенный к обычному математическому языку.

А с Electronics Workbench общим является возможность создания моделей как отдельных обьектов так и систем, путём поблочного моделирования и спомощью специальных блоков наблюдать протекающие процессы в модели.

1.3 Возможности, визуализация и графические средства

Основной объект системы MATLAB - прямоугольный числовой массив (матрица), в котором допускается применение комплексных элементов. Использование матриц не требует явного указания их размеров.

Система MATLAB обеспечивает выполнение операций с векторами и матрицами даже в режиме непосредственных вычислений. Ею можно пользоваться как мощнейшим калькулятором, в котором наряду с обычными арифметическими и алгебраическими действиями могут использоваться такие сложные операции, как обращение матрицы, вычисление ее собственных значений и векторов, решение систем линейных алгебраических уравнений и много других. Характерной особенностью системы является ее открытость, то есть возможность ее модификации и адаптации к конкретным задачам пользователя.

Привлекательной особенностью системы MATLAB является наличие встроенной матричной и комплексной арифметики. Система поддерживает выполнение операций с векторами, матрицами и массивами данных, реализует сингулярное и спектральное разложение, расчет ранга и чисел обусловленности матриц, поддерживает работу с алгебраическими полиномами, решение нелинейных уравнений и задач оптимизации, интегрирование функций в квадратурах, численное интегрирование дифференциальных и разностных уравнений, построение различных графиков, трехмерных поверхностей и линий уровня.

MATLAB предоставляет широкие возможности для работы с сигналами, для расчета и проектирования аналоговых и цифровых фильтров, включая построение их частотных, импульсных и переходных характеристик. Имеются в системе и средства выполнения спектрального анализа и синтеза, в частности реализации прямого и обратного преобразования Фурье. Благодаря этому ее довольно удобно использовать при проектировании электронных устройств.

Одной из наиболее привлекательных особенностей системы MATLAB является наличие в ней наглядного и эффективного средства составления программных моделей - пакета визуального программирования Simulink.

Пакет Simulink позволяет осуществлять исследование (моделирование во времени) поведения динамических линейных и нелинейных систем, причем составление «программы» и ввод характеристик систем можно производить в диалоговом режиме, путем сборки на экране схемы соединений элементарных звеньев. В результате такой сборки получается модель системы, называемая S-моделью. В качестве «кирпичиков» при построении S-модели применяются визуальные блоки (модули), которые сохраняются в библиотеках Simulink.

S-модель может иметь иерархическую структуру, то есть состоять из моделей более низкого уровня, причем количество уровней иерархии практически не ограничено.

1.4 Средства программирования

Система обеспечивает возможность обращения к программам, которые написаны на языках FORTRAN, С и C++.

Система MATLAB использует собственный М-язык, который сочетает в себе положительные свойства различных известных языков программирования высокого уровня. С языком BASIC систему MATLAB роднит то, что она представляет собой интерпретатор (осуществляет пооператорное компилирование и выполнение программы, не образуя отдельного исполняемого файла), М-язык имеет незначительное количество операторов, в нем отсутствует необходимость объявлять типы и размеры переменных. От языка Pascal система MATLAB позаимствовала объектно-ориентированную направленность, то есть такое построение языка, которое обеспечивает образование новых типов вычислительных объектов на основе типов объектов, уже существующих в языке. Новые типы объектов (в MATLAB они называются классами) могут иметь собственные процедуры их преобразования (они определяют методы этого класса), причем новые процедуры могут быть вызваны с помощью обычных знаков арифметических операций и некоторых специальных знаков, которые применяются в математике.

Принципы сохранения значений переменных в MATLAB наиболее близки к тем, которые присущи языку FORTRAN, а именно: все переменные являются локальными - действуют лишь в границах той программной единицы (процедуры, функции или главной, управляющей программы), где им присвоены некоторые конкретные значения. При переходе к выполнению другой программной единицы, значения переменных предыдущей программной единицы либо теряются (в случае, если выполненная программная единица представляет собой процедуру или функцию), либо становятся недосягаемыми (если выполненная программа является управляющей). В отличие от языков BASIC и Pascal, в языке MATLAB нет глобальных переменных, действие которых распространялось бы на все программные единицы. Но при этом язык MATLAB обладает возможностью, которая отсутствует в других языках. Интерпретатор MATLAB позволяет в одном и том же сеансе работы выполнять несколько самостоятельных программ, причем все переменные, используемые в этих программах, являются для них общими и образуют единое рабочее пространство. Это дает возможность более рационально организовывать сложные (громоздкие) вычисления по типу оверлейных структур.

Язык программирования системы MATLAB весьма прост, он содержит лишь несколько десятков операторов; незначительное количество операторов здесь компенсируется большим числом процедур и функций, содержание которых понятно пользователю, имеющему соответствующую математическую и инженерную подготовку.

В отличие от большинства математических систем, MATLAB является открытой системой: практически все ее процедуры и функции доступны не только для использования, но и для модификации. Почти все вычислительные возможности системы можно применять в режиме чрезвычайно мощного научного калькулятора, а также составлять собственные программы, предназначенные для многоразового применения; это делает MATLAB незаменимым средством проведения научных исследований. По скорости выполнения задач MATLAB опережает многие другие подобные системы. Все эти особенности делают ее весьма привлекательной для использования.

С системой MATLAB поставляются свыше ста подробно прокомментированных М-файлов, которые содержат демонстрационные примеры и определения новых операторов и функций. Наличие этих примеров и возможность работать в режиме непосредственных вычислений значительно облегчают изучение системы пользователями, заинтересованными в применении математических расчетов.


2. АСИНХРОННЫЙ ДВИГАТЕЛЬ (АД) КАК ОБЪЕКТ ИССЛЕДОВАНИЯ

2.1       Принцип действия асинхронных машин в режимах двигателя, генератора с отдачей энергии в сеть и электромагнитного тормоза

2.1.1 Принцип действия двигателя

Асинхронной машиной называется такая машина переменного тока, скорость вращения ротора которой не находится в строгом соответствии с частотой тока сети. Как и все электрические машины, асинхронные машины обладают свойством обратимости, т. е. могут работать как в двигательном, так и в генераторном режиме.

При протекании трёхфазной системы токов по трёхфазной обмотке статора в двигателе создаётся магнитное поле с индукцией В(х), распределённой вдоль окружности воздушного зазора между статором и ротором по синусоидальному закону и вращающееся в направлении чередования фаз с угловой скоростью w 1 (рисунок 2.1)

,(2.1)

где f1 – частота тока в сети;

р – число пар полюсов статора.


 

Рисунок 2.1 - а) Устройство и б) принцип действия асинхронного двигателя

Это поле обеспечивает изменяющееся во времени потокосцепление с контурами обмоток статора и ротора, индуктирующее в этих контурах ЭДС электромагнитной индукции. Под действием ЭДС ротора в проводниках его обмотки протекают переменные токи, взаимодействующие с вращающимся магнитным полем. В результате этого взаимодействия на проводники ротора действуют электромагнитные силы (силы Ампера), определяющие момент М, который может привести ротор во вращение с угловой скоростью w < w1 в направлении вращения поля, преодолевая момент сопротивления Мс рабочего механизма, сочленённого с двигателем. Если бы, разгоняясь, ротор догнал вращающееся магнитное поле, то перестало бы изменяться потокосцепление обмотки ротора, исчезли бы её ЭДС и ток и, следовательно, электромагнитные силы и момент М. Ротор начал бы замедляться и скользить относительно поля. Относительную скорость проскальзывания ротора и поля называют скольжением S:

S = (w1 - w)/ w1. (2.2)

Замедление ротора прекратится при такой скорости вращения w < w1, при которой ЭДС и ток ротора обеспечивают момент М, равный по значению моменту сопротивления Мс механизма, т.к. согласно уравнению движения системы механически связанных тел ускорение (замедление):

(dw /dt)= (М – Мс)/J, (2.3)

где J – суммарный момент инерции роторов двигателя и механизма.

Таким образом, энергия источника переменного тока (сети), подводимая к обмотке статора, превращается в механическую энергию на валу, передаваемую рабочему механизму, и частично в потери (в сопротивлениях обмоток, на трение вращающихся частей, на гистерезис и вихревые токи в ферромагнитных сердечниках статора и ротора). При этом ротор вращается со скоростью w< w1, т.е. асинхронно с магнитным полем.Ротор вращается под действием электромагнитного момента М в направлении вращения магнитного поля. Следовательно, для изменения направления вращения ротора (реверса) необходимо изменить чередование фаз напряжения, подводимого к обмотке статора, т.е. поменять присоединение двух любых проводов.

2.1.2 Генераторный режим с отдачей энергии в сеть

Асинхронные машины, как и все электрические машины, обратимы и при известных условиях могут работать в генераторном режиме.

Допустим, что с помощью какого-либо первичного двигателя ротор асинхронной машины, включенной в сеть, будет вращаться в прежнем направлении, но со скоростью ω, превышающей синхронную ω1. При этом полярность поля статора сохраним ту же, что и в двигательном режиме. Тогда скольжение s станет отрицательным и ротор при вращении будет обгонять вращающееся магнитное поле, а его проводники будут пересекать силовые линии в направлении, обратном тому, которое было при работе машины в двигательном режиме. Вследствие этого ЭДС и токи в роторе изменяют свое на правление на обратное. В результате изменяет свое направление сила взаимодействия вращающегося поля и токов ротора, а также момент на валу, т. е. развиваемый асинхронной машиной момент становится отрицательным по отношению к моменту первичного двигателя. Таким образом, асинхронная машина будет работать генератором, преобразовывая механическую энергию, получаемую or первичного двигателя, в электрическую, отдаваемую в сеть.

2.1.3 Режим электромагнитного тормоза

В практике иногда требуется быстро затормозить асинхронный двигатель, преодолевая его инерцию, или использовать двигатель для торможения приводного механизма, например для уменьшения скорости при спуске грузов в крановых и подъемных сооружениях.

В режиме тормоза асинхронная машина будет работать в том случае, если ротор приводится во вращение посторонним усилием в сторону, противоположную вращению поля (режим противовключения). Совершенно очевидно, что в этом случае вращающий момент будет направлен против направления вращения ротора и будет его тормозить. Чтобы перейти в тормозной режим работы, двигатель должен вначале остановиться, т. е. его скольжение s = +1. Для осуществления этого режима необходимо в цепь ротора включить значительное сопротивление. После остановки двигателя, ротор, приводимый во вращение посторонним усилием, начнет вращаться в сторону, противоположную вращению поля, и его скорость следует считать отрицательной по отношению к скорости поля ω1. Следовательно, при работе в тормозном режиме скольжение s>+l.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.