скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Сущность теории игр

 (1.9)

Игрок 2 добивается того, чтобы выполнялось условие

 (1.10)

Обозначим и  векторы, соответствующие оптимальным смешанным стратегиям игроков 1 и 2, т.е. такие векторы и , при которых будет выполнено равенство

 (1.11)

Цена игры - средний выигрыш игрока 1 при использовании обо­ими игроками смешанных стратегий. Следовательно, решением матричной игры является:

1)   – оптимальная смешанная стратегия игрока 1;

2)   – оптимальная смешанная стратегия игрока 2;

3)   g – цена игры.

Смешанные стратегии будут оптимальными ( и ), если образуют седловую точку для функции т.е.

 (1.12)

Существует основная теорема математических игр.

Для матричной игры с любой матрицей А величины

 и  (1.13)

существуют и равны между собой: a = b = g.

Следует отметить, что при выборе оптимальных стратегий игро­ку 1 всегда будет гарантирован средний выигрыш, не меньший чем цена игры, при любой фиксированной стратегии игрока 2 (и, наоборот, для игрока 2). Активными стратегиями игроков 1 и 2 называют стратегии, входящие в состав оптимальных смешанных стратегий соответствующих игроков с вероятностями, отличными от нуля. Значит, в состав оптимальных смешанных стратегий игроков могут входить не все априори заданные их стратегии.

Решить игру - означает найти цену игры и оптимальные страте­гии. Рассмотрение методов нахождения оптимальных смешанных стратегий для матричных игр начнем с простейшей игры, описываемой матрицей 2´2. Игры с седловой точкой специально рассматриваться не будут. Если получена седловая точка, то это означает, что имеются невыгодные стратегии, от которых следует отказываться. При отсутствии седловой точки можно получить две оптимальные смешанные стратегии. Как уже отмечалось, эти смешанные стратегии записываются так:


 (1.14)

Значит, имеется платежная матрица

 (1.15)

При этом

a11p1 + a21p2 = g; (1.16)

a12p1 + a22p2 = g; (1.17)

p1 + p2 = 1. (1.18)

a11p1 + a21(1 – p1) = a12p1 + a22(1 – p1); (1.19)

a11p1 + a21 – a21p1 = a12p1 + a22 – a22p1, (1.20)

откуда получаем оптимальные значенияи :

 (1.21)

 (1.22)

Зная  и , находим g:

 (1.23)

Вычислив g, находим и :

a11q1 + a12q2 = g; q1 + q2 = 1; (1.24)

a11q1 + a12 (1 q1) = g. (1.25)

при a11 ¹ a12. (1.26)

Задача решена, так как найдены векторы   и цена игры g. Имея матрицу платежей А, можно решить задачу графически. При этом методе алгоритм решения весьма прост (рис. 2.1).

1. По оси абсцисс откладывается отрезок единичной длины.

2. По оси ординат откладываются выигрыши при стратегии А1.

3. На линии, параллельной оси ординат, в точке 1 откладываются выигрыши при стратегии a2.

4. Концы отрезков обозначаются для a11-b11, a12-b21, a22-b22 , a21-b12 и проводятся две прямые линии b11b12 и b21b22.

5. Определяется ордината точки пересечения с. Она равна g. Абсцисса точки с равна р2 (р1 = 1 – р2).

Рис. 1.1. Оптимальная смешанная стратегия

Данный метод имеет достаточно широкую область приложения. Это основано на общем свойстве игр т´п, состоящем в том, что в любой игре т´п каждый игрок имеет оптимальную смешанную стратегию, в которой число чистых стратегий не больше, чем min(m, n). Из этого свойства можно получить известное следствие: в любой игре 2´п и т´2 каждая оптимальная стратегия  и  содержит не более двух активных стратегий. Значит, любая игра 2´п и т´2 может быть сведена к игре 2´2. Следовательно, игры 2´п и т´2 можно решить графически. Если матрица конечной игры имеет раз­мерность т´п, где т > 2 и п > 2, то для определения оптимальных смешанных стратегий используется линейное программирование.

1.2.2   Мажорирование (доминирование) стратегий

Мажорирование представляет отношение между стратегиями, наличие которого во многих практических случаях дает возможность сократить размеры исходной платежной матрицы игры. Рассмотрим это понятие на примере матрицы:

 (1.27)

Рассуждая с позиции игрока 2, можно обнаружить преимущество его третьей стратегии перед второй, поскольку при первой стратегии игрока 1 выигрыш игрока 2 равен -3 (вторая стратегия) и 1 (третья стратегия), а при второй стратегии игрока 1 выигрыш игрока 2 равен -2 (вторая стратегия) и -0,5 (третья стратегия). Таким образом, при любой стратегии игрока 1 игроку 2 выгоднее применять свою третью стратегию по сравнению со второй; при наличии третьей стратегии игрок 2, если он стремится играть оптимально, никогда не будет использовать свою вторую стратегию, поэтому ее можно исключить из игры, т.е. в исходной платежной матрице можно вычеркнуть 2-й столбец:

 (1.28)

С позиции игрока 1 его первая стратегия оказывается хуже второй, так как по первой стратегии он только проигрывает. Поэтому первую стратегию можно исключить, а матрицу игры преобразовать к виду: (0 0,5).

Учитывая интересы игрока 2, следует оставить только его первую стратегию, поскольку, выбирая вторую стратегию, игрок 2 оказывается в проигрыше (0,5 - выигрыш игрока 1), и матрица игры принимает простейший вид: (0), т.е. имеется седловая точка.

Мажорирование можно распространить и на смешанные стратегии. Если элементы одной строки не все меньше (или равны) соответствующих элементов других строк, но все меньше (или равны) некоторых выпуклых линейных комбинаций соответствующих элементов других строк, то эту стратегию можно исключить, заменив ее смешанной стратегией с соответствующими частотами использования чистых стратегий.

В качестве иллюстрации к сказанному рассмотрим матрицу игры:

 (1.29)

Для первых двух чистых стратегий игрока 1 возьмем частоты их применения (вероятности) равными 0,25 и 0,75.

Третья стратегия игрока 1 мажорируется линейной выпуклой комбинацией первой и второй чистых стратегий, взятых с частотами 0,25 и 0,75 соответственно, т.е. смешанной стратегией:

24 × 0,25 + 0 × 0,75 = 6 > 4; (1.30)

0 × 0,25 + 8 × 0,75 = 6 > 5. (1.31)

Поэтому третью стратегию игрока 1 можно исключить, используя вместо нее указанную выше смешанную стратегию.

Аналогично, если каждый элемент некоторого столбца больше или равен некоторой выпуклой линейной комбинации соответствующих элементов некоторых других столбцов, то этот столбец можно исключить из рассмотрения (вычеркнуть из матрицы). Например, для матрицы

 (1.32)

третья стратегия игрока 2 мажорируется смешанной стратегией из первой и второй его чистых стратегий, взятых с частотами 0,5 и 0,5:

10 × 0,5 + 0×0,5 = 5 < 6; (1.33)

0 × 0,5 + 10 × 0,5 = 5 < 7. (1.34)

Таким образом, исходная матрица игры эквивалентна матрице следующего вида:

 (1.35)

Как видно, возможности мажорирования смешанными страте­гиями в отличие от чистых значительно менее прозрачны (нужно должным образом подобрать частоты применения чистых стратегий), но такие возможности есть, и ими полезно уметь пользоваться.


1.3 Игры с природой

Модели в виде стратегических игр, в экономической практике могут не в полной мере оказаться адекватными действительности, поскольку реализация модели предполагает многократность повторения действий (решений), предпринимаемых в похожих условиях. В реальности количество принимаемых экономических решений в неизменных условиях жестко ограничено. Нередко экономическая ситуация является уникальной, и решение в условиях неопределенности должно приниматься однократно. Это порождает необходимость развития методов моделирования принятия решений в условиях неопределенности и риска.

Традиционно следующим этапом такого развития являются так называемые игры с природой. Формально изучение “игр с природой“, так же как и стратегических, должно начинаться с построения платежной матрицы, что является, по существу, наиболее трудоемким этапом подготовки принятия решения. Ошибки в платежной матрице не могут быть компенсированы никакими вычислительными методами и приведут к неверному итоговому результату.

Отличительная особенность игры с природой состоит в том, что в ней сознательно действует только один из участников, в большинстве случаев называемый игроком 1. Игрок 2 (природа) сознательно против игрока 1 не действует, а выступает как не имеющий конкретной цели и случайным образом выбирающий очередные «ходы» партнер по игре. Поэтому термин «природа» характеризует некую объективную действительность, которую не следует понимать буквально, хотя вполне могут встретиться ситуации, в которых «игроком» 2 действительно может быть природа (например, обстоятельства, связанные с погодными условиями или с природными стихийными силами).


2. ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ СМЕШАННЫХ СТРАТЕГИЙ

 

2.1 Постановка задачи

Выбрать оптимальный режим работы новой системы ЭВМ, состоящей из двух ЭВМ типов А1 и А2. Известны выигрыши от внедрения каждого типа ЭВМ в зависимости от внешних условий, если сравнить со старой системой.

При использовании ЭВМ типов А1 и А2 в зависимости от харак­тера решаемых задач В1 и В2 (долговременные и краткосрочные) будет разный эффект. Предполагается, что максимальный выигрыш соответствует наибольшему значению критерия эффекта от замены вычислительной техники старого поколения на ЭВМ A1 и А2.

Итак, дана матрица игры (табл. 1), где A1, А2 - стратегии руководителя; В1, В2 - стратегии, отражающие характер решаемых на ЭВМ задач.

Таблица 2.1.

 Игрок 2

Игрок 1

В1

В2

ai

А1

0,3 0,8 0,3

А2

0,7 0,4 0,4

bj

0,7 0,8

Требуется найти оптимальную смешанную стратегию руководителя и гарантированный средний результат g, т.е. определить, какую долю времени должны использоваться ЭВМ типов A1 и А2.

 

2.2 Описание алгоритма решения

Запишем условия в принятых обозначениях:

а11 = 0,3; а12 = 0,8; а21 = 0,7; а22 = 0,4.

Определим нижнюю и верхнюю цены игры:

a1 = 0,3; a2 = 0,4; a = 0,4; b1=0,7; b2 = 0,8; b = 0,7.

Получаем игру без седловой точки, так как

 (2.1)

 (2.2)

Максиминная стратегия руководителя вычислительного центра А2.

Для этой стратегии гарантированный выигрыш равен a = 0,4 (40%) по сравнению со старой системой.

Определим g, pl и р2 графическим способом (рис. 2.1).

Рис. 2.1. Графическая интерпретация алгоритма решения

Алгоритм решения:

1. По оси абсцисс отложим отрезок единичной длины.

2. По оси ординат отложим выигрыши при стратегии А1.

3. На вертикали в точке 1 отложим выигрыши при стратегии А2.

4. Проводим прямую b11b12, соединяющую точки а11, а21.

5. Проводим прямую b21b22, соединяющую точки а12, а22.

6. Определяем ординату точки пересечения с линий b11b12 и b21b22. Она равна g.

7. Определим абсциссу точки пересечения с. Она равна р2, а р1 = l – р2.

Выпишем решение и представим оптимальную стратегию игры:

р1 = 0,375; (2.3)

р2 = 0,625;  (2.4)

g =0,55. (2.5)

Вывод. При установке новой системы ЭВМ, если неизвестны условия решения задач заказчика, на работу ЭВМ А1 должно приходиться 37,5% времени, а на работу ЭВМ А2 - 62,5%. При этом выигрыш составит 55% по сравнению с предыдущей системой ЭВМ.


3. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ИГР С ПРИРОДОЙ

3.1 Постановка задачи

Рассмотрим игры с природой на примере следующей задачи. Необходимо закупить уголь для обогрева дома. Количество хранимого угля ограничено и в течение холодного периода должно быть полностью израсходовано. Предполагается, что неизрасходованный зимой уголь в лето пропадает. Покупать уголь можно в любое время, однако летом он дешевле, чем зимой. Неопределенность состоит в том, что не известно, какой будет зима: суровой, тогда придется докупать уголь, или мягкой, тогда часть угля может остаться неиспользованной. Очевидно, что у природы нет злого умысла и она ничего против человека «не имеет». С другой стороны, долгосрочные прогнозы, составляемые метеорологическими службами, неточны и поэтому могут использоваться в практической деятельности только как ориентировочные при принятии решений.

Имеются следующие данные о количестве и ценах угля, необходимого зимой для отопления дома (табл. 3.1). Вероятности зим: мягкой - 0,35; обычной - 0,5; холодной - 0,15.

Зима Количество угля, т Средняя цена за 1 т, грн.
Мягкая 4 7
Обычная 5 7,5
Холодная 6 8

Эти цены относятся к покупкам угля зимой. Летом цена угля 6 грн. за 1 т. Есть место для хранения запаса угля до 6 т, заготавливаемого летом. Если потребуется зимой докупить недостающее количество угля, докупка будет по зимним ценам. Предполагается, что весь уголь, который сохранится до конца зимы, в лето пропадет. (Предположение делается для упрощения постановки и решения задачи.)

Сколько угля летом покупать на зиму?

 

3.2 Решение задач игр с природой

Пользуясь исходными данными, строим матрицу игры. Стратегиями игрока 1 (человек) являются различные показатели количества тонн угля, которые ему, возможно, следует купить. Состояниями природы выступают вероятности видов зимы.

Вычислим, например, показатель для холодной зимы. Игрок 1 приобрел уголь для обычной зимы 5 т по цене 6 грн. за 1 т. Для обогрева он должен закупить еще 1 тонну по цене 8 грн за 1т.

Следовательно, расчет платы за уголь будет 5 × 6 – при заготовке, и зимой 8 × 1. Аналогично производятся расчеты при других сочетаниях.

В итоге получим следующую платежную матрицу в игре с природой платежную матрицу (табл. 3.2).

Таблица 3.2.

Вероятность

Зима

0,35 0,5 0,15
Мягкая Обычная Холодная
Мягкая (4т) -(4 × 6) -(4 × 6 + 1 × 7,5) -(4 × 6 + 2 × 8)
Обычная (5 т) -(5 × 6) -(5 × 6 + 0 × 7,5) -(5 × 6 + 1 × 8)
Холодная (6 т) -(6 × 6) -(6 × 6 + 0 × 7,5) -(6 × 6 + 0 × 8)

Произведем расчет ожидаемой средней платы за уголь (табл. 3.3).

Таблица 3.3

Зима Средняя ожидаемая плата
Мягкая -(24 × 0,35 + 31,5 × 0,5 + 40 × 0,15) = -30,15
Обычная -(30 × 0,35 + 30 × 0,5 + 38 × 0,15) = -31,2
Холодная -(36 × 0,35 + 36 × 0,5 + 36 × 0,15) = - 36

Как видно из табл. 3.3, наименьшая ожидаемая средняя плата приходится на случай мягкой зимы (30,15 грн.). Соответственно если не учитывать степени риска, то представляется целесообразным летом закупить 4 т угля, а зимой, если потребуется, докупить уголь по более высоким зимним ценам.

Однако, привлекая дополнительную информацию в форме расчета среднеквадратичного отклонения как индекса риска. Мы можем уточнить принятое на основе максимума прибыли или минимума издержек решение. Дополнительные рекомендации могут оказаться неоднозначными, зависящими от склонности к риску ЛПР.

Формулы теории вероятности:

Дисперсия случайной величины ξ равна

Среднеквадратичное отклонение составит

где D и М - соответственно символы дисперсии и математического ожидания.

Проводя соответственно вычисления для всех случаев по такому принципу:

Мягкая зима:

М(ξ2) = - (242 × 0,35 + 31,52 × 0,5 + 402 × 0,15) = - 937,725

(Мξ)2 = -(30,152 ) = - 909,0225

Dξ =937,725- 909,0225 = 28,7025

sx = 5,357


Если продолжить исследование процесса принятия решения и вычислить среднеквадратичные отклонения платы за уголь для мягкой, обычной и холодной зимы, то соответственно получим:

• для мягкой зимы sx = 5,357;

• для обычной зимы sx = 2,856;

• для холодной зимы sx = 0.

Минимальный риск, естественно, будет для холодной зимы, однако при этом ожидаемая средняя плата за уголь оказывается максимальной - 36 ф. ст.

Вывод. Мы склоняемся к варианту покупки угля для обычной зимы, так как ожидаемая средняя плата за уголь по сравнению с вариантом для мягкой зимы возрастает на 3,5%, а степень риска при этом оказывается почти в 2 раза меньшей (sx = 2,856 против 5,357).

Отношение среднеквадратичного отклонения к математическому ожиданию, вариабельность (средний риск на затрачиваемый 1 ф. ст.) для обычной зимы составляет 2,856/31,2 = 0,0915 против аналогичного показателя для мягкой зимы, равного 5,357/30,15 = 0,1777, т.е. вновь различие почти в 2 раза.

Эти соотношения и позволяют рекомендовать покупку угля, ориентируясь не на мягкую, а на обычную зиму.


ЗАКЛЮЧЕНИЕ

В заключение данной работы можно сделать вывод о необходимости использования теории игр в современных экономических условиях.

В условиях альтернативы (выбора) очень часто нелегко принять решение и выбрать ту или иную стратегию. Исследование операций позволяет с помощью использования соответствующих математических методов принять обоснованное решение о целесообразности той или иной стратегии. Теория игр, имеющая в запасе арсенал методов решения матричных игр, позволяет эффективно решать указанные задачи несколькими методами и из их множества выбрать наиболее эффективные, а также упрощать исходные матрицы игр.

В данной работе были проиллюстрированы практическое применение двух основных стратегий теории игр и сделаны соответствующие выводы.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1.         Тернер Д. Вероятность, статистика, исследование операций: Пер. с англ. – М.: Высш.шк., 1971.

2.         Мак Киси Дж. Введение в теорию игр: Пер. с англ. – М.: Физматгиз, 1960.

3.         Нейман Дж., Моргенштерн О. Теория игр и экономическое поведение: Пер. с англ. – М.: Наука, 1970.

4.         Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике. – М.: ДИС, 1997.

5.         Дубров А.М. Математико-статистическая оценка эффективности в экономических задачах. – М.: Финансы и статистика, 1982.

6.         Дубров А.М. Последовательный анализ в статистической обработке информации. – М.: Статистика, 1976.

7.         Вальд А. Последовательный анализ: Пер. с англ. – М.: Физматгиз, 1960.

8.         Моделирование рисковых ситуаций в экономике и бизнесе: Учеб. пособие /А.М. Дубров, Б.А. Лагоша, Е.Ю. Хрусталев, Т.П. Барановская; Под ред. Б.А. Лагоши. – 2-е изд., пере раб. и доп. – М.: Финансы и статистика, 2001.


Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.