скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Химизм токсичности металлов

Реферат: Химизм токсичности металлов

Вступление.

Отравления соединениями тяжелых металлов известны с древних времен. Упоминание об отравлениях «живым серебром» (сулема) встречается в IV веке. В середине века сулема и мышьяк были наиболее распространенными неорганическими ядами, которые использовались с криминальной целью в политической борьбе и в быту. Отравления соединениями тяжелых металлов часто встречались в нашей стране: в 1924-1925 гг. Было зарегистрировано 963 смертельных исхода от отравлений сулемой. Отравления соединениями меди преобладают в районах садоводства и виноделия, где для борьбы с вредителями используется медный купорос. В последние годы наиболее распространены отравления ртутью, входящей в состав серой ртутной мази, применяемой для лечения педикулеза. Нередки случаи массовых отравлений, например, гранозаном после употребления семян подсолнечника, обработанного этим средством.

Летальность при отравлениях соединениями тяжелых металлов и мышьяка, ранее достигавшая 64-84%, при современных методах лечения равна 15-19%.

Корреляция ряда физических, химических, физико-химических свойств с токсичностью металлов.

Уже давно, еще в прошлом веке, делались попытки связать токсическое действие металлов с отдельными их свойствами. Так, Richet (1882) сопоставил токсичность солей металлов в опытах на изолированном сердце лягушки и на рыбах. В его опытах степень токсичности металлов (судя по действующим концентрациям растворов) и их атомные веса расположились следующим образом:

Выяснилось, однако, что строгого соответствия между атомным весом и действующей концентрацией нет. Кроме того, токсичность одних и тех же металлов была неодинаковой в зависимости от объекта действия. Автор пришел к заключению, что токсичность металлов не строго соответствует их атомному весу даже для металлов одного семейства. Например, палладий токсичнее платины (при сопоставлении действия их солей), цезий менее токсичен, чем рубидий, и т.д. На связь токсичности металлов с их атомным весом и на нарастание силы действия с увеличением атомного веса указывал также Rambuteau (1892). Но все же имеется тенденция к увеличению токсичности с увеличением атомного веса, хотя есть и явные исключения, например бериллий, медь. Последняя для многих клеток много токсичнее, чем такие металлы, как барий, стронций и др., несмотря на меньший атомный вес. Различна и сила действия железа в двух- и трехатомном состоянии, несмотря на одинаковый в обоих случаях атомный вес элемента, что также говорит против преимущественного значения атомного веса для токсичности металлов.

М.П.Николаев (1948), анализируя и суммируя литературные данные о связи ядовитого действия металлов с их атомным весом, не нашел достаточно убедительных доказательств существования общей закономерности увеличения токсичности с ростом атомного веса. Другие авторы видели связь действия металлов с их атомным весом в том, что по мере увеличения последнего в данной группе элементов уменьшается их содержание в животном организме и увеличивается токсичность (В.И.Вернадский, 1940; А.И. Войнар, 1960). Действительно, токсичность металлов с большим атомным весом, таких, как свинец, ртуть, золото, серебро и др., велика, а наличие их в животном организме либо оспаривается, либо очень невысоко.

В основу классификации элементов и периодической системы легли характеристики, вытекающие из самой природы элемента и его основного, «фундаментального», свойства. Таким свойством является положительный заряд атома.

Malstrom и Rosenberg (1959) считали такие показатели, как электроотрицательность, ионный радиус, наиболее надежными параметрами в характеристике элементов. Эти же свойства, по мнению авторов, могут иметь влияние на биологическую активность металлов или связаны с последней, в частности при образовании ими комплексов в биосредах, так как стабильность комплексов, в свою очередь, является функцией электронных свойств металлов.

Одним из первых Mathews (1904) сделал попытку связать токсичность металлов с физическими свойствами, иными, чем их атомный вес. Он предположил, что физиологическая активность металла определяется легкостью, с которой он отдает свой электрон, степенью сродства последнего к заряду элемента. Более прочная связь обуславливает малую активность элемента. В качестве физического показателя этой связи Mathews избрал нормальный потенциал. Последний характеризует способность металла переходить в раствор в виде ионов. Нормальный потенциал определяется как разность потенциалов между металлом в напряженном состоянии и раствором, содержащим его ионы при активности, равной единице. Чем отрицательнее нормальный потенциал металла, тем легче этот металл растворяется.

Связь нормального потенциала металлов с вилой их действия Mathews проверял в опытах по изучению влияния растворов хлоридов разных металлов на изолированный нерв и яйца морского ежа. В результате изучения действия 27 металлов автор пришел к заключению, что их токсичность меняется обратно значению нормального потенциала.


В результате своих расследований Mathews предложил эмпирическую формулу для расчета силы действия раствора любой соли, если известна ядовитость раствора какой-нибудь иной соли:

 где Vа – искомая концентрация неизвестной соли, вызывающая нужный эффект; Vо – эффективная концентрация известной соли; Еа – нормальный потенциал металла неизвестной соли; Ео – нормальный потенциал металла известной соли; 0,14 – разница нормальных потенциалов двух последовательных солей.

Mathews обнаружил также обратную зависимость между токсичностью металлов и величиной их атомных объемов. Так как значение нормальных потенциалов и атомных объемов изменяются периодически, то и в токсичности металлов должна отмечаться такая же периодичность.

Соли металлов в растворах могут образовывать ионы, гидраты, комплексы. В свою очередь последние могут вновь диссоциировать, образуя ионы. Поэтому токсичность прежде всего может быть связана с действием ионов и со свойствами атомов и ионов металлов, характеризующими их активность, способность вступать в связь с протоплазмой, с отдельными ее компонентами.

Seifritz (1949) показал, что действие солей связано с рядом свойств именно ионов (катионов), с некоторыми характеристиками металлов как атомов или ионов. Этими характеристиками, по его данным, были атомный вес, радиус ионов, электроотрицательность, а также степень гидратации ионов. Последняя играет как бы защитную роль, создавая вокруг ионов оболочку, препятствующую реакции с компонентами окружающей среды, но не влияет на токсичность самого металла. Порядок токсичности обратен степени гидратации. Так, литий гидратирован сильно, а цезий – мало; последний и более токсичен.

Так как и степень гидратации, и подвижность ионов снижаются с повышением атомного веса, то для более тяжелых элементов эти характеристики имеют меньшее значение.

По мнению Seifritz, наиболее вероятным физическим фактором, с которым связана большая токсичность тяжелых металлов, является электроотрицательность: она может влиять на легкость взаимодействия металла с протоплазмой. В периодической системе элементов электроотрицательность, в общем, увеличивается слева направо в каждом периоде; токсичность связана с электроотрицательностью, и таким образом подтверждается общая тенденция к увеличению ядовитости с увеличением атомного веса. Но, по мнению автора, нельзя выделить одно доминирующее свойство, не учитывая влияния других и их взаимную связь. Возможно, отдельные характеристики свойств металлов связаны с их токсическим действием разными путями. Например, с селективностью или большим сродством к отдельным химическим группам, таким, как способность многих металлов образовывать ковалентные связи с атомом серы. Это может определить механизм действия.

Используя накопленные экспериментальные данные о токсичности металлов, некоторые исследователи сделали попытку установить сравнительную токсичность металлов для теплокровных животных, а также связь между ядовитостью и теми или иными физическими и физико-химическими свойствами металлов и их соединений. Так, Lewis (1958) по степени токсичности для белых мышей разделил металлы на три группы, взяв в качестве критерия дозы, которые вызывают гибель половины животных, взятых в опыт (DL50) при внутрибрюшинном или подкожном введении хлористых солей:

1) Hg, In, Tl, Au, As, Cd, V, Ba.

2) Mn, Co, Cu, Fe, Mo, W, Cs, Sr, U.

3) Ca, Li, K, Sm, Ce, Na, Mg.

Наиболее ядовитыми оказались катионы ртути, индия, кадмия, меди, серебра, таллия, платины и урана, т.е. те же металлы, что и для организмов, обитающих в водной среде, или для плесеней.

Сопоставляя порядок токсичности металлов с их положением в периодической системе элементов, Bienvenu и соавторы (1963) сделали заключение о периодических изменениях токсичности металлов, связанных с положением последних в этой системе:

Токсичность комплексных соединений металлов.

Не обнаружено сколько-нибудь значительной корреляции (взаимосвязи, взаимозависимости) между токсичностью солей металлов и их растворимостью. Однако установлено, что способность к комплексообразованию в известной степени характеризует поведение катионов в биологических средах.

Зависимость токсичности хлористых солей от стабильности комплексов металлов отмечал также Rolf-Dieter (1962). Токсичность солей в его опытах нарастала в порядке: Mo а стабильность комплексов этих металлов: Mo < Fe < Co < Zn < Ni < Cu.

Константы стабильности металлов с разными лигандами в биологических субстратах коррелируют в известной мере с константой стабильности металлов с ЭДТУ. Это показал Matsushita (1964), а также Williams (1953) для хелатов и комплексов двухвалентных металлов с аспаргиновой кислотой, глицилглицином, триптофаном, аланином и др. Так, например, порядок стабильности комплексов металлов с ЭДТУ таков: Fe > Ga > Cu > Ni > Pb > Y > Cd > Co > Mn > Ca, а порядок стабильности их комплексов с аминокислотами следующий: Hg > Cu > Ni > Pb > Zn > Co > Cd > Mn > Ca. Прочность комплексов металлов с ЭДТУ всегда больше, чем стабильность комплексов тех же металлов с такими комплексонами организма, как белки, аминокислоты, карбоновые кислоты, гидроксилы (Clement, 1962). Поэтому допустимо переносить закономерности, касающиеся корреляции между токсичностью катионов металлов и константой стабильности их хелатов с ЭДТУ, также и на стабильность комплексов металлов с рядом других лигандов, возникающих в биологических средах, в живых объектах.

Для осуществления токсического действия имеют большое значение растворимость, определенная избирательность накопления и действия, степень «сродства» металла к той или иной функциональной группе клеток, к имеющимся в последних химических группировках и т.д.

Однако при достаточной дозе введенного металла большое количество катионов поступает в циркуляцию т распределяется по всему организму, вступает в контакт со всеми тканями, нарушая их нормальную функцию, чем обуславливается токсический и летальный эффект. При этом важное значение может иметь как быстрота, так  и прочность образующихся в биологических средах комплексов металлов. Поэтому, видимо, острая токсичность и оказывается коррелирующей со стабильностью комплексов металлов с ЭДТУ или гидроксилами и др., со степенью нерастворимости сульфидов металлов. Степень прочности комплексов металлов с ЭДТУ в свою очередь коррелирует со способностью металлов образовывать комплексы с такими биологически важными образованиями, как белки, ферменты, субстраты клеточных оболочек. Токсичность таких сильных ядов, как ртуть, кадмий, индий, линейно возрастает с увеличением их константы стабильности в комплексах с ЭДТУ, а также с прочностью их сульфидов. Эти металлы образуют с атомами серы более прочные соединения, чем ионы биометаллов. Они блокируют активные центры ферментов и выключают их из управления метаболизмом. Тяжелые металлы часто называют тиоловыми ядами.

Стабильность комплексов коррелирует линейно с потенциалом ионизации и поэтому может влиять на степень взатмодействия катионов с биологическим субстратом. Связана со стабильностью комплексов и электроотрицательность, которая является мерой реакции ионов металлов с элементами клеточной мембраны (Danielli, Davis, 1951). Этим может быть объяснена корреляция токсичности с электроотрицательностью. Но электроотрицательность и потенциал ионизации в свою очередь связаны с положением элемента в периодической системе, со строением электронной оболочки. Так, первичный потенциал ионизации уменьшается по мере увеличения атомного номера элемента в своей группе. В свою очередь потенциал ионизации и атомные радиусы связаны между собой: как правило, потенциал уменьшается при увеличении атомного радиуса (легче происходит отрыв внешнего электрона).

Прочность комплексов тем выше, чем меньше радиус как центрального иона, так и аддентов. Устойчивость комплексов связана также и с электронной конфигурацией прежде всего металла, но, в известной мере, и лигандов. Константа стабильности (или нестабильности) комплексного соединения коррелирует с его электронной структурой: она тем выше, чем больше электросродство катиона, чем ниже его потенциал ионизации, меньше атомный радиус. Однако наиболее устойчивы соединения с циклическими лигандами, содержащими пяти- и шестичленные кольца. На устойчивость комплексов в значительной степени влияет рН среды.

Только в самое последнее время сравнительная токсичность металлов в виде комплексных соединений была изучена в прямых опытах. Nofre (1963) определил ядовитость ряда металлов в виде хелатов с ЭДТУ при внутрибрюшинном введении белым мышам и сравнил ее с токсичностью солей тех же металлов. Как можно видеть, в большинстве случаев хелаты металлов менее токсичны, чем соли:

Группа металлов, в том числе «тяжелых», по мнению некоторых авторов, может быть охарактеризована как группа токсических агентов не только с универсальной активностью, но и с индивидуальной специфичностью их действия (Passow a. oth., 1961).

Как уже указывалось выше, токсичность металлов связана как со строением самого металла, так и с функциональной и структурной организацией биологического объекта. С другой стороны, каждая функциональная единица, реагирующая с металлом, может иметь большее или меньшее значение для нормальной жизнедеятельности, что сказывается на силе токсического эффекта. Это обстоятельство может определить и особенности действия и таким образом объяснить специфичность поражения отдельными металлами.

Общетоксическое действие металлов может быть связано с неспецифическим торможением ряда ферементов в силу денатурации белков вообще. Но ряду металлов в то же время свойственно специфическое угнетение определенных ферментов уже в очень малых концентрациях. Поэтому особенности отравления отдельными металлами выявляются преимущественно при длительном контакте с ними.

Установленная корреляционная связь между острой ядовитостью металлов и рядом физических, физико-химических, химических свойств металлов – их атомов и ионов – подтверждает наличие таких связей для химических соединений разных классов. Такие связи позволят по отдельным характеристикам металла представить силу его токсического действия. Они создают предпосылки для предвидения сравнительной токсичности неорганических соединений металлов, для ориентировочного суждения о силе действия одного металла по известной токсичности другого. Разумеется, такие суждения имеют лишь приближенный характер, но они могут быть использованы как в экспериментальной токсикологии, так и в гигиенической праактике.

Математическая обработка данных о корреляционных связях между токсичностью и той или иной характеристикой атомов или ионов металлов привела к разработке эмпирических уравнений, позволяющих предвидеть токсичесские дозы металлов, например, для объектов, находящихся в водной среде (Mathews, 1904; Show, Grushkin, 1957; Somers, 1961).

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.