скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Применение лазеров

В фокусе лазерного луча концентрируется энергия, достаточная для того, чтобы быстро нагреть и испа­рить биологическую ткань. Перемещая «лазерный скальпель», хирург рассекает ткань. Его работа отли­чается виртуозностью: вот он почти неуловимым дви­жением руки приблизил конец указки к рассекаемой ткани, а вот приподнял, отодвинул его подальше; указка быстро и равномерно перемещается вдоль линии разреза, и вдруг ее движение слегка замедляется. Глубина разреза зависит от скорости резания и от степени кровенаполнения ткани. В среднем она состав­ляет 2-3 мм. Часто рассечение тканей выполняют не в один, а в несколько приемов, рассекая как бы послойно. В отличие от обычного скальпеля, лазерный скальпель не только рассекает ткани, но может также сшивать края разреза, иными словами, может произво­дить биологическую сварку.

Рассечение производят сфокусированным излучени­ем (хирург должен держать выходную трубку на таком расстоянии от ткани, чтобы точка, в которой фокуси­руются лучи, оказалась на поверхности ткани). При мощности излучения 20 Вт и диаметре сфокусирован­ного светового пятна 1 мм достигается интенсивность (плотность мощности) 2,5 кВт/см2. Излучение прони­кает в ткань на глубину около 50 мкм. Следовательно, объемная плотность мощности, идущая на нагрев ткани, достигает 500 кВт/см3. Для биологических тка­ней это очень много. Происходит их быстрое разогре­вание и испарение — налицо эффект рассечения ткани лазерным лучом. Если же луч расфокусировать (для чего достаточно немного отодвинуть конец выходной трубки от поверхности ткани) и тем самым снизить интенсивность, скажем, до 25 Вт/см2, то ткань испа­ряться не будет, а будет происходить поверхностная коагуляция («заваривание»). Вот этот-то процесс и используют для сшивания разрезанной ткани. Биоло­гическая сварка осуществляется за счет коагуляции жидкости, содержащейся в рассекаемых стенках опери­руемого органа и специально выдавливаемой в проме­жуток между соединяемыми участками ткани.

Лазерный скальпель — удивительный инструмент. У него есть много несомненных достоинств. Одно из них — возможность выполнения не только рассечения, но и сшивания тканей. Рассмотрим другие достоинства.


Лазерный луч делает относительно бескровный разрез, так как одновременно с рассечением ткани коагулирует края раны, «заваривая» встречающиеся на пути разреза кровеносные сосуды. Правда, сосуды должны быть не слишком крупными; крупные сосуды необходимо предварительно перекрыть специальными зажимами. В силу своей прозрачности лазерный луч позволяет хирургу хорошо видеть оперируемый учас­ток. Лезвие обычного скальпеля всегда в какой-то мере загораживает хирургу рабочее поле. Лазерный луч рассекает ткань как бы на расстоянии, не оказывая на нее механического давления. В отличие от операции обычным скальпелем, хирург в данном слу­чае может не придерживать ткань рукой или инстру­ментом. Лазерный скальпель обеспечивает абсолют­ную стерильность - ведь с тканью взаимодействует здесь только излучение. Луч лазера действует локаль­но; испарение ткани происходит только в точке фокуса. Прилегающие участки ткани повреждаются при этом значительно меньше, чем при использовании обычного скальпеля. Как показала клиническая практика, рана от лазерного скальпеля относительно быстро заживля­ется.

До появления лазеров поиски методов лечения отслоения сетчатки привели к следующему. Нужно закрыть разрыв сетчатки, но ведь она находится внутри глаза. Предложили способ, состоя­щий в том, что до больного места добирались с тыльной стороны глаза. Для чего рассекали веки и вытаскивали глазное яблоко наружу. Оно висело только на нервных волокнах. Затем через внешнюю оболочку осуществляли термокоагуляцню, при помощи которой добивались рубцового сращения краев разрыва с прилегающими тканя­ми. Очевидно, что такая сложная операция требует, во-первых, виртуозного мастерства хирурга и, во-вторых, что также очень важно, решимости больного пойти на та­кой шаг.

С появлением лазеров были начаты исследования по их использованию для лечения отслоения сетчатки. Эти работы проводились в институте имени Г. Гельмгольца в Москве и в клинике имени В. П. Филатова в Одессе. Ме­тод лечения был выбран необычный. Для проникновения к больному месту уже не надо производить разрез века и вытаскивать глазное яблоко. Для этого был использован прозрачный хрусталик. Именно через него было предложено проводить операцию. Для технической реа­лизации операции был разработан прибор, называемый офтальмокоагулятор марки ОК-1. Прибор состоит из ос­нования, на котором размещены источники питания и электрическая часть аппаратуры с органами управления. На основании на специальном шланге с помощью гибко­го соединения подвешена излучающая головка с руби­новым лазером. На одной оптической оси с лазером рас­полагается система прицеливания, которая позволяет через зрачок тщательно исследовать глазное дно, найти пораженное место и навести на него (прицелить) луч лазера. Для этого служат две рукоятки, находящиеся в руках хирурга. Вспышка обеспечивается нажатием кноп­ки, расположенной на одной из рукояток. Выдвигающаяся шторка предохраняет глаза хирурга во время вспышки. Для удобства работы врача-оператора и обслуживающе­го персонала прибор снабжен световой и звуковой сиг­нализацией. Энергия импульсов регулируется от 0,02 до 0,1 Дж. Сама техника операции состоит в следующем. Сначала врач с помощью оптического визира исследует глазное дно больного и, определив границы заболевшего участка, рассчитывает необходимое количество вспышек и потребную энергию каждой вспышки. Затем, следуя по границам заболевшего участка, производит их облу­чение. Вся операция напоминает сварку металла точеч­ным методом.

6.  Лазерное оружие.

В середине 80-х годов был получен ряд сообщений о том, что на американских полигонах было испытано несколько образцов лазерного оружия, часть из которого была из­готовлена в виде пистолета, часть—в виде ружья. В со­общениях подчеркивалось, что оно было создано для борьбы с живой силой противника на поле боя. Дейст­вие оружия основано на использовании большой пиковой мощности лазера. Для чего применялся твердотельный (рубиновый или на стекле с неодимом) лазер с модуля­цией добротности. В результате длительность импульса составляла всего 10~9 с, что при использовании энергии в 1 Дж приводило к мощности в 109 Вт. В первую оче­редь действие такого оружия, по замыслам создателей, должно состоять в поражении глаз, вызывая в них обра­тимые или необратимые процессы. Предположения ос­нованы на том, что, попадая на хрусталик человеческого глаза, лазерное излучение не должно поражать сам хрус­талик, так как он прозрачен для этого излучения. Но хрусталик, как всякая оптическая система, фокусирует излучение в очень маленькое пятно на сетчатке. В этом пятне плотность энергии возрастает настолько, что при­водит к кровоизлиянию. Человек либо не успевает моргнуть — настолько короткой является вспышка, либо даже не видит излучение — если оно на волне 1,06 мкм. Но зре­ние теряется мгновенно. Образцы такого оружия пред­ставлены на рисунке ниже. В качестве источника излу­чения используется лазер на рубине, помещенный внутри съемного патрона. В этом же патроне находится источ­ник возбуждения, представляющий собой химический элемент, питаемый от батареи. На рисунке показан патрон отдельно от пистолета. Управление таким оружием максимально приближено к обычному оружию. Оно на­водится на объект поражения, нажимается спусковой курок, чем подается импульс от батареи на химический элемент, который дает питание на рубиновый стержень. Излучаемая энергия выбрасывается в сторону цели. Дей­ствие показанного на рисунке ружья аналогично. Разра­ботчики считают, что для поражения органов зрения нет необходимости наведения луча точно в глаз против­ника. Достаточно облучить голову или весь корпус че­ловека. Но если он будет расположен лицом в сторону источника излучения, то поражение органов зрения обеспечено. Механизм воздействия лазерного излучения на сетчатку и хрусталик подробно рассмотрен в преды­дущем материале и здесь нет надобности повторяться. В сообщении отмечается, что даже если объект пора­жения находится к источнику излучения под некоторым углом, все же он может потерять зрение. С появлением лазеров на СО2, работающих в непрерывном режиме, работы по созданию наземного оружия были форсированы. Были созданы лазерные «пушки». Если первые пистолеты и ружья предназначались в основном против человека и только в отдельных случаях — для поджога легко воспламеняющихся материалов, то лазер­ные пушки предполагали, в основном, борьбу с техникой.

В печати сообщалось, что для повышения интереса Пентагона к лазерам американские инженеры выполнили следующий эксперимент. Создали лазерную пушку для борьбы с низколетящими объектами. Затем запус­тили модель беспилотного самолета, который на малой высоте прошел над позицией, где размещалась эта пуш­ка. На глазах наблюдавших была отрезана часть плоскости беспилотного самолета. Самого луча никто не ви­дел, но самолет был сбит. В опубликованных материалах, носящих рекламный характер, ничего не говорится о мощности излучения пушки, о высоте, на которой про­летел самолет, о материале, из которого были сделаны плоскости самолета, а также о покраске крыла самолета. После этого эксперимента, как сообщается, работы по созданию лазерного оружия развернулись с новой силой.

Помимо использования так называемого прямого воз­действия лазерного излучения на объекты поражения, высокая направленность лазерного излучения применя­ется за рубежом и для создания лазерных имитаторов стрельбы и тренажеров. Использование лазеров для тре­нировки стрелков и наводчиков танковых пушек обос­новывают тем, что лазер, имея малую расходимость пучка, повышает реальность имитации попадания в цель, обеспечивает «безопасность» стрельбы, дает возможность проводить тренировки в любое время суток и года. В со­общении делают вывод, что лазерные имитаторы, кото­рыми предполагают оснастить танковые подразделения, позволят разыгрывать танковые бои в условиях, макси­мально приближенных к боевым.

Так как имитаторы стрельбы и тренажеры соответ­ствуют по дальности стрельбы тем видам оружия, кото­рые они имитируют, т. е. в пределах от сотни метров до нескольких километров, то предполагают применить маломощные твердотельные лазеры, газовые и полупро­водниковые лазеры, простые по конструкции, надежные в эксплуатации, безопасные для «противника». И как отмечают, влияние тумана и дымки на прохождение ла­зерного излучения в атмосфере дает положительный эффект для тренировок. Условия стрельбы ухудшаются, но если наводчик видит цель в пределах возможностей своего оружия, то и излучение лазера достигнет цели. Быстродействие лазерных имитаторов дает возможность использовать их для имитации стрельбы любых средств поражения, обладающих любой начальной скоростью. Сообщают, что в такие имитаторы приходится вводить специальные устройства, рассчитанные на задержку «выстрела» в целях приведения его в соответствие с по­летным временем снаряда или пули, а также при стрель­бе по движущимся целям с упреждением. Здесь представлена схема лазер­ного тренажера.

 Она включает в себя два варианта аппаратуры. Первым оборудуется наводчик, вторым — объект поражения: танк, самолет, вертолет и т. п. Аппаратура наводчика содержит оптический прицел, через который наводчик наблю­дает объект поражения и удерживает перекрестье при­цела на цели, лазерный источник излучения и блок управления его работой, пульт регистрации попадании и приемник попаданий. На объекте поражения устанав­ливается блок имитатора попаданий. Он состоит из на­бора фотоприемников, размещенных на объекте в раз­личных его точках (на башне, на защитном щитке водителя, на баке с топливом и т. д.), и командного устройства, включающего в работу световой, звуковой или дымовой имитатор, который указывает экипажу о поражении танка, а также наводчику — о попадании в объект поражения. На основе такой схемы за рубежом был разработан ряд тренажеров. Некоторые из них исполь­зуют штатные средства с небольшими изменениями. Проведенные испытания позволяют сделать вы­вод, что существенно сокращается стоимость учебных стрельб за счет экономии боеприпасов, за счет много­кратного использования мишеней и упрощения трени­ровочного оборудования. Сообщается, что экспертная комиссия дала свою оценку и показала, что качество подготовки стрелков и наводчиков повышается, однако и тренажеры продолжают совершенствовать. Если в пер­вых сериях тренажеров в качестве источника излучения применялся рубиновый лазер, то впоследствии он был заменен лазером полупроводникового типа на арсениде галлия. Затем изменениям подверглась прицельная сис­тема. В ней были установлены дополнительные линзы и зеркала, которые имитируют введение упреждения при стрельбе по движущимся целям, установку требуемого угла возвышения. Установка прицела производится по результатам измерения дальности с помощью дальномерной приставки, которая вводит в логическую схему величину коррекции направления луча с тем, чтобы ус­тановка прицела соответствовала истинному расстоянию до цели и баллистике данного снаряда. Имитация вспыш­ки производится ксеноновым прожектором, который вклю­чается в момент излучения лазерного импульса. Внутри башни танка смонтирован блок управления, с помощью которого подаются команды имитатора стрельбы. Панели управления имеются у командира танка и заряжающего. На панели последнего имеются красная и зеленая кноп­ки, которые включаются в зависимости от того, какой вид боеприпаса используется. Приемники лазерного из­лучения расположены по периметру башни тапка. Их пять штук. Каждый из них по углу ноля зрения пере­крывает 36° по азимуту и ±15° по углу места. При попа­дании луча лазера, имитирующего выстрел орудия, на один из приемных фотодетекторов, включается блок ра­диостанции, который посылает стреляющему танку сиг­нал о поражении цели. Одновременно в танке-цели вклю­чается сигнальное устройство, информирующее экипаж о поражении их танка. Кроме того, баллон, смонтирован­ный на башне танка, начинает дымить в течение 30 с. Иногда вместо одного баллона устанавливают ряд пе­тард, что дает гораздо больший эффект.

7.  Заключение.

За последнее время в России и за рубежом были проведены обширные исследования в области квантовой электроники, созданы разнообразные лазеры, а так же приборы, основанные на их использовании. Лазеры применяются в локации и связи, в космосе и на земле, в медицине и строительстве, в вычислительной технике и строительстве. Становление и развитие голографии также немыслимо без лазеров.

Нам, молодому поколению, нужно знать об этом интересном приборе, переделывающем мир, как можно больше, и быть готовым к его использованию в учебной, научной и военной деятельности.

8.  Список литературы.


Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.