скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Шпоры по математическому анализу

Реферат: Шпоры по математическому анализу

1.  Производные и дифференциалы высших порядков

Опр-ие: производной n-го порядка (n³2) функции у=f(х) называется производная (первого порядка) от производной (n-1)-го порядка.

Найдя 1-ю производную можно определить 2-ю производную по тем же формулам, по которым определяли первую.

Опр-ие: Дифференциалом n-го порядка функции у=f(х) называется дифференциал первого порядка от дифференциала (n-1)-го порядка. (обозначается dny)По определению dny= d(dn-1y). Иногда dy называют диф. Первого порядка. В общем случае, dny=f(n)(х)dxn, в предположении, что n-ая производная f(n)(х) сущ-ет, поэтому понятно, что n-e. Производную обозначают так

3. Теорема Ролля.


Теорема Ролля: Если функция у=f(х) непрерывна на замкнутом промежутке [a,b], дифференцируема хотя бы в открытом промежутке (a,b) и на концах промежутка ее значения совпадают f(a)=f(b), то внутри промежутка найдется такая точка x=c, что f'(c)=0

Док-во: Если функция сохраняет постоянное значение на промежутке [a,b],  f(х)= f(a)=f(b), то f'(c)=0 и в качестве точки с можно взять любую точку интервала (a,b).

Пусть теперь функция f(x) не является постоянной. По теореме Вейштраса существуют точки х1 и х2 на отрезке [a,b] , в которых достигаются наименьшее m и наибольшее М значения функции. Обе эти точки не могут быть концевыми для отрезка [a,b], т.к. из условия f(a)=f(b) вытекало бы, что m, следовательно, функция f(х) сохраняла бы постоянное значение, вопреки предположению.

Допустим, что не совпадает с концом отрезка точка х1, т.е. a< х1<b, тогда х1 является точкой локальности экстремума. По условия теоремы существует f'(х1). Из этих двух утверждений по теореме Ферма получаем f'(х1)=0, следовательно,

х1 можно принять  за точку с.

2.  Теорема Ферма (необходимое условие локального экстремума).

Опр-ие: Функция у=f(х) имеет в точке x0 локальный максимум, если сущ-ет окрестность (х0-d, х0+d), для всех точек х которой выполняется неравенство f(х)£f(х0). Аналогично определяется локальный минимум, но выполняться должно равенство f(х)³f(х0).


Теорема Ферма: Если функция у=f(х) имеет в точке х0 локальный экстремум и дифференцируема в этой точке, то ее производная f'(х0) равна нулю.

Док-во: Проведем его для случая максимума в точке х0. Пусть  (х0-d, х0+d) - та окрестность, для точек которой выполняется неравенство


Здесь возможно как 1 и 2 варианты, но  | ∆х| <δ

При ∆х>0, будет ∆y:∆x ≤0, поэтому


При ∆х<0, будет ∆y:∆x ≥0, поэтому

По условию теоремы, существует производная f'(х0)А это означает, что правая производная fпр'(х0) и левая производная fл'(х0) равны между собой: fпр'(х0)= fл'(х0)= f'(х0). Таким образом, с одной стороны, f'(х0)≤0, с другой стороны, f'(х0)≥0, что возможно лишь, когда f'(х0)=0.

4. Теорема Коши.


Теорема Коши: Пусть функции у=f(х) и у=g(х) неперырвны на отрезке [a,b],дифференцируемы хотя бы в открытом промежутке (a,b) и на этом промежутке g'(х) не обращается в нуль. Тогда существует такая точка c Î (a,b), что выполняется  равенство (1)


Докозательство: Вначале отметим, что знаменатель g(b)-g(a) ≠ 0,т.к. из равенства g(b)=g(a) следовало бы по теореме Ролля, что производная g'(х) обратилась бы в нуль в какой-нибудь точке промежутка (a,b), что противоречит условию g'(х)≠0. Образуем вспомогательную функцию:

К ней применима теорема Ролля: F(х) непрерывна в [a,b] и дифференцируема в (a,b)  как сумма функций, непрерывных и дифференцируемых в соответствующих промежутках, кроме того, как легко проверить непосредственно, F(a)=F(b)=0. Следовательно, существует точка c Î (a,b), , такая, что F'(c)=0. Вычисляем:


Подставляем x=c:

После деления на g'(х) (причем как говорилось раньше g'(х) ¹0), мы приходим к формуле (1)

 

5. Теорема Лагранжа.

Теорема Лагранжа: Если функция у=f(х) неперырвна на отрезке [a,b], дифференцируема  хотя бы в интервале (a,b) то существует такая точка c Î (a,b), что f(b)-f(a)=f'(c)(b-a).  

Доказательство: Применим теорему Коши к функциям f(x) и g(x)=x. Для них все условия этой теоремы выполняются, включая требование g'(х)¹0. Учитывая, что g(b)=b, g(a)=a, g'(x)=1, получим, (2)


Где точка с-точка, существующая в силу теоремы Коши в интервале (a,b). Умножив обе части на b-a, придем к формуле (2).

6. Правило Лопиталя.

Пусть выполнены следующие условия:

1. Функции f(x) и g(x) определены и дифференцируемы в выколотой окрестности точки a.

2.     (1)

3. g(x) и f(x) не равны нулю в этой выколотой окрестности.

Если при этом существует (2)


То существует и (3)

Причем, они равны между собой.(4)


Доказательство: Доопределим функции f(x) и g(x) в точке x=a, положив f(a)=g(a)=0. Рассмотрим отрезок между числами a и x, где точка из упомянутой в условии выколотой окрестности. Для определенности будем считать, что x<a. Обе функции на отрезке [x,a] неперывны, а в интервале (x,a) дифференцируемы, т.е. удовлетворяют условиям теоремы Коши. Следовательно, Существует такая точка сÎ(x,a), что выполняется равенство(5)


Так как f(a)=g(a)=0. При х®а будет с®а, потому x<c<a.

По условию теоремы существует (2). Здесь х можно заменить любой другой буквой, в частности с. Переходя к пределу в равенстве (5) при х®а, получим


Или, что то же самое (4).

7. Необходимое условие локального экстремума функции одной переменной.

Опр-ие: Функция у=f(х) имеет в точке x0 локальный максимум, если сущ-ет окрестность (х0-d, х0+d), для всех точек х которой выполняется неравенство f(х)£f(х0). Аналогично определяется локальный минимум, но выполняться должно равенство f(х)³f(х0).

Теорема Ферма: Если функция у=f(х) имеет в точке х0 локальный экстремум и дифференцируема в этой точке, то ее производная f'(х0) равна нулю.

Док-во: Проведем его для случая максимума в точке х0. Пусть  (х0-d, х0+d) - та окрестность, для точек которой выполняется неравенство


Здесь возможно как 1 и 2 варианты, но  | ∆х| <δ

При ∆х>0, будет ∆y:∆x ≤0, поэтому

При ∆х<0, будет ∆y:∆x ≥0, поэтому

По условию теоремы, существует производная f'(х0)А это означает, что правая производная fпр'(х0) и левая производная fл'(х0) равны между собой: fпр'(х0)= fл'(х0)= f'(х0). Таким образом, с одной стороны, f'(х0)≤0, с другой стороны, f'(х0)≥0, что возможно лишь, когда f'(х0)=0.

Достаточные условия локального экстремума.

1. предположим, что в некоторой окрестности точки х0 существует f'(х) ( в самой точке х0 производной может не существовать). Допустим, что с приближением к точке х0 слева функция f(х) возрастает (т.е. f'(х)>0), а после точки х0 убывает (т.е. f'(х)<0). Очевидно, что в точке х0 имеется максимум. Вывод: Если в достаточно малой окрестности точки х0  f'(х)>0 при х< х0 и  f'(х)<0 при х > х0 , то в точке х0 имеется максимум.

Если в достаточно малой окрестности точки х0  f'(х)<0 при х< х0 и  f'(х)>0 при х > х0 , то в точке х0 имеется минимум.

2. Перейдем к формулировке достаточного условия экстремума с помощью второй производной. Предполагается, что в некоторой окрестности точки  х0 , в том числе и в самой точке  х0 , существует первая производная f'(х). Кроме того, в точке х0 существует вторая производная f''(х0). Исходя из выполнения необходимых условий экстремума, полагаем, что f''(х0)=0. Посмотрим теперь на f''(х)как на первую производную от функции


Допустим, что f''(х0)>0. Это означает, что f'(х) возрастает при переходе значений х < х0 к значениям х > х0 . Но f'(х0)=0, поэтому возрастание f'(х0)<0, при х < х0 и f'(х0)>0, при х > х0 . (для значений х из достаточно малой окрестности х0 ). В соответствии с п.1 получается минимум в точке х0 . Аналогичное рассуждение при f''(х0)<0 приводит к существованию максимума в точке х0 . Вывод: если f'(х0)=0, а f''(х0)<0, то функция y=f(x) имеет локальный максимум в точке х0 . Если f'(х0)=0, а f''(х0)>0, то функция y=f(x) имеет локальный минимум в точке х0.

11. Формула Тейлора и Маклорена.


Этой формулой можно воспользоваться, когда в некоторой окрестности точки х0 существует непрерывная производная f(n+1)(x), и значения х принадлежат этой окрестности. Через Rn обозначен так называемый остаточный член. Его можно записывать в разных формах. Мы ограничимся формулой Лагранжа:


Здесь с - какое-то число, о котором известно только то, что оно находится между х0 и х.

При х0=0 формулу Тейлора называют формулой Маклорена, общий вид которой:


8. Нахождение наибольшего и наименьшего значений функции на отрезке.

Рассмотрим функцию у=f(х), непрерывную на отрезке [a,b]. По теореме Вейерштрасса  эта функция принимает наибольшее и наименьшее значения на отрезке.  Наибольшее и наименьшее значения могут достигаться либо в точках локального экстремума (x2, x3, x4, x5,), либо на концах промежутка. Находим точки, подозрительные на экстремум (х1, x2, x3, x4, x5,). Вычисляем значения функции в этих точках и на концах промежутка [a,b]. Из полученных чисел выбираем самое большое и самое маленькое.  Это не предусматривает применения достаточных условий экстремума в точке х1, где локального экстремума не существует, т.е. проделана лишняя работа. Однако, как правило, экономнее вычислять значения функции во всех точках, подозрительных на экстремум, вместо того, что бы отбирать из них с помощью достаточных условий лишь те точки, в которых локальный экстремум действительно есть. Иногда описанную задачу называю глобальный экстремум.

9. Нахождение асимптот графиков функции.

Говорят, что точка движется по кривой в бесконечность, если расстояние этой точки до начала координат неограниченно возрастает.

Определение: Прямая называется асимптотой кривой, если расстояние от точки, движущейся по кривой в бесконечность, до этой прямой стремится к нулю.

Нахождение вертикальных ас:

Ищутся конечные значения х=а, при которых


Существование такого значения часто связано с обращением в нуль знаменателя дроби.

Нахождение наклонных асимптот.

Пусть y = kx+b - асимптота кривой y=f(x) при x→+∞ (как на рисунке). Угол φ сохраняет постоянное значение, α=φ. Из ∆ KLM KM=MLּ cos α. Поэтому KM и ML стремятся к нулю одновременно. ML=f(x)-(kx+b), следовательно (1):


Преобразуем это равенство, вынеся х за скобки:


При x→∞ такое равенство возможно только тогда, когда:



Здесь

Поэтому


Следовательно (получаем (2)),

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.