скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

(7)

А интересующее нас число e2n равно, очевидно, 2cn–1 (рис. 2д).

а) c1 = 1

б) a1 = 2

в) an+1 = 2an + 2cn

г) cn+1 = an + 2cn

д) e2n = 2cn–1

Рис. 2. а)

Из A в C за два прыжка можно попасть только одним способом: c1 = 1.

б)

Из A в A за два прыжка можно попасть двумя способами: a1 = 2.

в)

В A можно попасть из C двумя способами и из A двумя способами: an+1 = 2an + 2cn.

г)

В C можно попасть из A одним способом и из C — двумя: cn+1 = an + 2cn.

д)

В E можно попасть из C двумя способами: e2n = 2cn–1.

Как же найти явную формулу для an и cn? Запишем наше рекуррентное соотношение (7) так:

an+1 + cn+1√2 = (an + cn√2)(2 + √2)

(8)

и — как вы уже, конечно, догадались — ещё так:

an+1 – cn+1√2 = (an – cn√2)(2 – √2).

(9)

Отсюда по индукции, пользуясь (7), получаем:

an + cn√2 = (2 + √2)n–1(a1 + c1√2) = (2 + √2)n,

an – cn√2 = (2 – √2)n–1(a1 – c1√2) = (2 – √2)n.

Поэтому

cn =

(2 + √2)n – (2 – √2)n

2√2

,

а так как e2n = 2cn–1, получаем окончательно

e2n =

(2 + √2)n–1 – (2 – √2)n–1

√2

,   e2n–1 = 0.

Задача решена. Неясно только, как в этой задаче (и в предыдущей задаче6) можно было додуматься до формул, содержащих ±√2, — ведь в задаче речь идёт о целых числах! (Для участников олимпиады и читателей «Кванта» задача7 была облегчена тем, что в формулировке указывался ответ — «Квант», 1979, №11, М595).

Однако «сопряжённые числа» возникли бы совершенно автоматически, если бы мы владели началами линейной алгебры (см.[12]), и применили стандартные правила этой науки к решению уравнений (7). Эти правила предлагают сначала выяснить, какие геометрические прогрессии (an = a0λn, cn = c0λn) удовлетворяют данному рекуррентному соотношению. Значения, для которых такие прогрессии существуют, — они называются характеристическими значениями или собственными числами — определяются из некоторого уравнения (оно тоже называется характеристическим). Для (7) характеристическое уравнение имеет вид λ2 – 4λ + 2 = 0, его корни — как раз 2 + √2 и 2 – √2. Зная эти корни, любое решение рекуррентного соотношения мы можем получить как «линейную комбинацию» соответствующих геометрических прогрессий ([11]). «Начальное условие» (в нашем случае a1 = 2, c1 = 1) определяет нужное нам решение однозначно.

Неудивительно, что даже самые простые рекуррентные целочисленные последовательности, для которых характеристическое уравнение — квадратное с целыми коэффициентами (примеры — те же (6) и (7) или последовательность Фибоначчи 1, 1, 2, 3, 5, 8, ..., Fn+1 = Fn + Fn–1; см.[9], [10]), выражаются, как функции номера, с помощью «сопряжённых» квадратичных иррациональностей.

Заметим, что большее характеристическое число определяет скорость роста последовательности: при больши́х n в задаче7 en  (2 + √2)n/√2. Можно сказать это ещё так:

lim
n → ∞

en+1

en

= 2 + √2.

Для задачи 6 аналогичное наблюдение:

lim
n → ∞

xn

yn

= √2.

Интересное продолжение этого факта мы увидим в следующей задаче с бо́льшим числом «сопряжённых» иррациональностей.

Поочерёдно меняем все знаки

8. Пусть

(1 + √2 + √3)n = qn + rn√2 + sn√3 + tn√6,

где qn, rn, sn и tn — целые числа. Найти пределы

lim
n → ∞

rn

qn

,
lim
n → ∞

sn

qn

,
lim
n → ∞

tn

qn

.

Конечно, мы здесь можем выразить (qn+1; rn+1; sn+1; tn+1) через (qn; rn; sn; tn), пользуясь тем, что

qn+1 + rn+1√2 + sn+1√3 + tn+1√6 = (1 + √2 + √3)(qn + rn√2 + sn√3 + tn√6),

но, наученные опытом, мы уже знаем, что более простые формулы получаются не для самих чисел qn, rn, sn, tn, a для некоторых их комбинаций. Одну такую комбинацию мы уже знаем: это

qn + rn√2 + sn√3 + tn√6 = (1 + √2 + √3)n.

Нетрудно сообразить, каковы будут другие. Рассмотрим вместе с данным числом

λ1 = 1 + √2 + √3,

ещё три «сопряжённых»:

λ2 = 1 – √2 + √3,   λ3 = 1 + √2 – √3,   λ4 = 1 – √2 – √3.

Тогда

qn – rn√2 + sn√3 – tn√6 = λ2n,

qn + rn√2 – sn√3 – tn√6 = λ3n,

qn – rn√2 – sn√3 + tn√6 = λ4n.

Мы можем выразить qn, rn, sn, tn через λ1, λ2, λ3, λ4:

qn =

λ1n + λ2n + λ3n + λ4n

4

,

sn =

λ1n + λ2n – λ3n – λ4n

4√3

,

rn =

λ1n – λ2n + λ3n – λ4n

4√2

,

tn =

λ1n – λ2n – λ3n + λ4n

4√6

.

Теперь заметим, что λ1 > |λ2|, λ1 > |λ3|, λ1 > |λ4|. Поэтому

lim
n → ∞

rn

qn

=
lim
n → ∞

1 – (λ2/λ1)n + (λ3/λ1)n – (λ4/λ1)n

1 + (λ2/λ1)n + (λ3/λ1)n + (λ4/λ1)n

·

1

√2

=

1

√2

.

Аналогично найдём, что

lim
n → ∞

sn

qn

=

1

√3

и
lim
n → ∞

tn

qn

=

1

√6

.

Мы говорили выше, что сопряжённые числа a ± b√d возникают часто как корни квадратного уравнения с целыми коэффициентами. В связи с последней задачей возникает такое желание:

9. Написать уравнение с целыми коэффициентами, один из корней которого равен 1 + √2 + √3.

Возникает подозрение, что вместе с этим числом λ1 уравнению с целыми коэффициентами удовлетворяют и сопряжённые, которые в решении предыдущей задачи мы обозначили λ2, λ3, λ4. Нужное уравнение можно записать так:

(x – λ1)(x – λ2)(x – λ3)(x – λ4) = 0;

то есть

(x – 1 – √2 – √3)(x – 1 + √2 – √3)×  (x – 1 – √2 + √3)(x – 1 + √2 + √3) = 0;

после преобразований получаем

((x – 1)2 – 5 – 2√6)·((x – 1)2 – 5 + 2√6) = 0,  (x2 – 2x – 4)2 – 24 = 0,  x4 – 4x3 – 4x2 – 16x – 8 = 0.

Именно такое уравнение получилось бы в качестве характеристического, если бы мы применили упомянутую мелким шрифтом в конце предыдущего раздела общую теорию к исследованию линейного преобразования

(qn; rn; sn; tn) → (qn+1; rn+1; sn+1; tn+1)

в предыдущей задаче. Заметим, кроме того, что мы на самом деле получили уравнение наименьшей степени (с целыми коэффициентами) с корнем λ1 = 1 + √2 + √3. Попробуйте это доказать!

Алгебраическое послесловие

Мы разобрали несколько примеров, в которых затрагивались пограничные вопросы алгебры, математического анализа и теории чисел. (Каждому направлению, которое мы наметили, можно было бы посвятить более подробную статью в «Кванте»!) В заключение покажем ещё, как можно смотреть на основных героев статьи — «сопряжённые числа» — с чисто алгебраической точки зрения.

Предположим, что у нас есть множество P чисел (или выражений с буквами, или ещё каких-то элементов), с которыми можно выполнять четыре действия арифметики с соблюдением обычных арифметических правил. Такое множество называется полем; поля образуют, например, рациональные и действительные числа. Если в поле P не разрешимо, скажем, уравнение x2 – d = 0, то можно расширить его, рассматривая элементы вида p + q√d, где p, q  P, a √d — новый символ, который при умножении сам на себя дает d, т.е. √d·√d = d, так что

(p + q√d)·(p' + q'√d) = (pp' + qq'd) + (pq' + qp')√d.

При d = –1 расширением поля вещественных чисел получаются комплексные числа.

В новом поле P1 — «квадратичном расширении» поля P — есть интересное отображение λ = p + q√d → λ = p – q√d (своеобразная «алгебраическая симметрия»), называемое сопряжением, с такими свойствами:

Все элементы старого поля P переходят в себя;

Все равенства, содержащие арифметические операции, при этом отображении сохраняются:

λ + μ = λ + μ;  λ · μ = λ · μ; (10)

Это отображение является частным случаем так называемых автоморфизмов Галуа расширения P1 поля P.

В задачах 8 и 9 мы видели пример «двукратного» расширения — присоединения √2 и затем √3, — в результате которого получилось поле с бо́льшим количеством автоморфизмов Галуа: кроме тождественного отображения, их уже три

(√2 → –√2,  √3 → √3;√2 → √2,  √3 → –√3;√2 → –√2,  √3 → –√3),

и их «взаимодействие» устроено так же, как во множестве самосовмещений прямоугольника.

Оказывается, к основному полю можно присоединять корни любого алгебраического уравнения. Автоморфизмы возникающего нового поля — предмет одной из красивейших ветвей алгебры XIX–XX века, теории Галуа, которая позволяет, в частности, исследовать вопрос о разрешимости уравнений в радикалах ([13], [14]).

Мы закончим эту статью набором задач, в основном продолжающих уже затронутые темы, но требующих иногда и новых соображений, и обещанным списком литературы.

Список литературы

1. Л.Курляндчик, А.Лисицкий. «Суммы и произведения» («Квант», 1978, №10). назад к тексту

2. Второе решение задачи М514 («Квант», 1979, №5, с.26). назад к тексту

3. Р.Нивен. «Числа рациональные и иррациональные» (М., «Мир», 1966). назад к тексту

4. Д.Фукс, М.Фукс. «О наилучших приближениях» («Квант», 1971, №6, №11) и «Рациональные приближения и трансцендентность» («Квант», 1973, №1). назад к тексту

5. Н.Васильев, В.Гутенмахер. «Прямые и кривые» (М., «Наука», 1978), с.103–105. назад к тексту

6. А.Н.Маркушевич. «Ряды» (М., «Наука», 1979). назад к тексту

7. Избранные задачи из журнала American Mathematical Monthly (М., «Мир», 1977), с.560–561. назад к тексту

8. Л.Курляндчик, Г.Розенблюм. «Метод бесконечного спуска» («Квант», 1978, №1). назад к тексту

9. В.Березин. «Филлотаксис и последовательность Фибоначчи», («Квант», 1979, №5, с.53). назад к тексту

10. Н.Н.Воробьев. «Числа Фибоначчи» (Популярные лекции по математике, вып.6) (М., «Наука», 1978). назад к тексту

11. А.И.Маркушевич. «Возвратные последовательности» (Популярные лекции но математике, вып.1) (М., «Наука», 1978). назад к тексту

12. Л.И.Головина. «Линейная алгебра и некоторые её приложения» (М., «Наука», 1979). назад к тексту

13. М.М.Постников. «Теория Галуа» (М., Физматгиз, 1963). назад к тексту

14. Ван-дер-Варден. «Алгебра» (М., «Наука», 1976). назад к тексту


Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.