скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Наша галактика

Вот, например, система четырех звезд из созвездия Лиры, которую астрономы обозначают буквой «эпсилон».  Все четыре  звезды  очень похожи друг на друга. Они больше, массивнее и ярче Солнца, и каждая из них , скорее напоминает Сириус.

Особенно  замечательна  пара звезд-гигантов,  сливающаяся  для невооруженного глаза в одну звез­ду — Капеллу.  Они  схожи,  как близнецы, и их тесное, в буквальном смысле слова, содружество  (рас­стояние  между  ними — миллионы километров) заставляет обе звезды обращаться вокруг общего центра масс почти за три месяца.

Когда две звезды находятся друг от друга на расстоянии, сравнимом с их поперечниками, они неизбежно теряют свою сферическую форму. Взаимное притяжение оказывается настолько мощным, что обе звезды под действием приливных сил вы­тягиваются  в  направлении  друг к  другу.  Вместо  шара  каждая звезда становится трехосным  эллип­соидом,  причем  наибольшие  оси эллипсоидов  всегда  совпадают  с прямой, соединяющей центры обеих звезд.

Одним из типичных представите­лей этого класса звезд является звезда W из созвездия Большой Медведицы. В этой системе из двух дынеобразных заезд движение, как обычно, совершается вокруг общего центра масс. Оно весьма стреми­тельно: звезды так близки друг к другу,  что  через  восемь  часов каждая из них снова возвращается в первоначальное положение. Лю­бопытно, что обе «звездные дыни» как две капли воды сходны между собой.  Благодаря равенству масс центр тяжести лежит в точности посередине между звездами, и обе они, в сущности, обращаются по одной общей круговой орбите.

При наблюдениях с Земли оба компонента этой системы неразличимы в отдельности даже в силь­нейшие телескопы. Все сведения о  природе звезды W Большой  Мед­ведицы были получены исключи­тельно по наблюдениям изменения ее видимой звездной величины. Не­трудно сообразить, что, обращаясь вокруг  общего  центра  тяжести, дынеобразные  светила  поворачи­ваются к нам то более широкой, те более узкой своей частью. По этой причине звезда W Большой Медведицы принадлежит к числу переменных звезд, т е. звезд, поток излучения от которых изменяется. Тщательный анализ кривой изменения потока от W Большой Мед­ведицы и раскрыл перед астроно­мами все удивительные свойства этой двойной системы.

Иногда  дынеооразными  могут быть самые  крупные,  массивные из звезд. Примером может служить уникальная система АО Кассиопеи, в сравнении с которой предыдущая пара выглядят весьма миниатюрной.

Обе,  звезды  в  системе  АО Кассиопеи—горячие гиганты, тем­пература атмосферы которых около 25000  К.  Каждый из  гигантов почти в 30 раз массивнее Солнца и в 200—300 тыс. раз превосходит его по светимости.

Расчеты показывают, что рас­стояние между центрами этих горя­чих  гигантов  составляет  всего 25  млн.  км.,  а  вытянутость их такова, что обе исполинские «дыни» касаются друг друга! И вся эта система быстро вращается с перио­дом всего в несколько часов!

Звезду bЛиры  можно  без всяких колебаний назвать замеча­тельной. Как и звезда W Большой Медведицы, b Лиры  состоит из двух  дынеобразных  звезд,  обра­щающихся вокруг общего центра тяжести. Большая из них—горя­чая гигантская звезда, атмосфера которой нагрета до 15000 К. Мень­шая звезда вдвое холоднее, и ее излучение совершенно теряется в потоках света, излучаемых главной звездой.      

На b Лиры впервые обратили внимание в конце  ХVШ в., но,  несмотря на тщательные исследования в течение почтя двух веков этой яркой звезды, ее природа до  недавнего времени, казалась зага­дочной. Особенно сложными и непонятными были спектр звезды и те изменения, которые в нем наблю­дались. Сейчас эти световые «ияеро-глифы» расшифрованы, и результаты  проведенного  исследования схематически представлены на рисунке.

От главной звезды В9 к ее спут­нику F  непрерывно  извергаются потоки  газового  вещества.  Они огибают спутник  и возвращаются к главной звезде, образуя, таким образом, непрерывную циркуляцию газа. Но инертность газа и враще­ние спутника вокруг главной звезды приводят к тому, что часть газа, находящегося  за  спутником,  на стороне, противоположной направ­лению на главную звезду, улету­чивается во внешнее пространство. При этом газ, удаляясь от звезды, образует огромное  газовое коль­цо. Нечто сходное можно иногда увидеть  при  фейерверках,  когда особые вертушки  выбрасывают в воздух светящиеся спирали.

Кольцеобразный газовый шлейф b  Лиры — образование динамиче­ское. Оно непрерывно рассеивается в пространстве, и его кажущаяся стабильность объясняется непрерыв­ным пополнением газового вещест­ва идущего от вращающейся звезд­ной пары.

Доступная нашему наблюдению газовая спираль имеет почти такой же размер, как наша планетная система. Луч зрения лежит как раз в ее плоскости, и только благодаря этому  случайному  обстоятельству удалось обнаружить ее существо­вание.  Кольцо  вуалирует  спектр главной  звезды,  и  именно этим вызваны   странные   особенности спектра  b Лиры. Если бы систему  b Лиры мы наблюдали «сверху» или «снизу», она показалась бы нам самой обычной звездой.

На зимнем  небе в созвездии Близнецов выделяются две звезды, сходные по яркости друг с другом. Верхняя из них называется Касто­ром, а нижняя - Поллуксрм. Оба эти имени мифологического  про­исхождения.  Согласно  легендам древних греков, так звали двух близнецов, рожденных красавицей Ледой от всемогущего Зевса.

Еще  в  1718  г.  английский астроном Д. Брадлей (1693-1762) открыл, что Кастор—двойная звезда, состоящая из  двух  горячих и крупных солнц. Вскоре удалось заметить, что обе звезды весьма медленно обращаются вокруг обще­го центра. К сожалению, до сих пор период обращения в этой системе не может считаться уверенно опреде­ленным.  Наиболее надежным его значением считается 341 год.

 Трудности, с которыми приходит­ся сталкиваться астрономам, станут  более понятными, если осознать, что видимое движение в системах двойных звезд не есть дви­жение истинное. Дело в том, что плоскость, в которой спутник совер­шает  обращение вокруг  главной звезды, обычно наклонена под не­которым  углом  к  лучу  зрения. Поэтому астрономы видят не истин­ную орбиту звезды и не истинное ее движение, а только проекцию того и другого на плоскость, пер­пендикулярную к лучу зрения.

Все это сильно затрудняет иссле­дования. Отсюда проистекает и та неточность результатов, с которыми мы сейчас столкнулись.

Кастор А и Кастор В (как обо­значают астрономы компоненты ин­тересующей  нас  пары)  отстоят друг от друга примерно в 76 раз дальше, чем Земля от Солнца. Ина­че говоря, обе звезды разделяет расстояние, почти вдвое превышаю­щее среднее расстояние Плутона от Солнца.

Около полутора веков назад по­близости от Кастора была замечена слабосветящаяся   звездочка   9-й звездной величины, сопровождаю­щая Кастор А и Кастор В в их полете вокруг центра Галактики. Если звезды видны на небе вблизи друг от друга и движутся в одном направлении и с одной скоростью — это верный признак того, что звезды физически связаны между собой. Поэтому уже с начала века Кастор считается не двойной, а тройной звездой.

Кастор С — третий  компонент в рассматриваемой системе солнц — полная противоположность Касто­ру А и Кастору В. Это карликовая красноватая звездочка. Расстояние между ней и главными звездами системы во всяком случае не меньше чем 960 а. е. Заметим, что измерен­ное расстояние есть проекция на небосвод истинного расстояния.

При значительной удаленности от главных звезд Кастор С обра­щается вокруг них с периодом в десятки тысяч лет! Неудивительно, что за полтора века наблюдения Кастор С не сдвинулся  со своего места на сколько-нибудь ощутимую величину.

Любопытнее всего, что каждая из  трех  звезд,  с  которыми  мы сейчас познакомились, в свою оче­редь, представляет собой настолько тесную пару звезд, что «разделить» их удается только методами спект­рального анализа.

Кастор А и Кастор В распада­ются на две пары близнецов, рас­стояния между которыми составля­ют около 10000000 км! Это в пять раз  меньше,  чем  расстояние  от Меркурия до Солнца. Весьма воз­можно, что все четыре звезды под действием взаимного тяготения при­обрели дынеобразную форму трех­осных эллипсоидов,

Что касается Кастора С, то и эта звезда состоит из двух близ­нецов-карликов, удаленных друг от друга на 2700000 км, что лишь вдвое превышает диаметр Солнца.

По случайному стечению обстоя­тельств плоскость, в которой об­ращаются оба двойника Кастор С, проходит через луч зрения земного наблюдателя. Благодаря этому одна звезда   периодически   закрывает часть другой,  из-за  чего  общий поток излучения от системы умень­шается. Применяя астрономическую терминологию, можно сказать, что Кастор С  является затменно-переменной звездой.

 Перед нами раскрылась удиви­тельная картина — система из шести звезд, связанных между собой уза­ми взаимного тяготения: две пары горячих огромных звезд и  пара холодных  красноватых  карликов, непрерывно участвующих, в сложном движении.  Двойники  Кастор  А совершают оборот вокруг общего центра масс всего за 9 дней. Двой­ники Кастор В, несколько более близкие друг к другу, имеют еще меньший период обращения—толь­ко .3 дня. И уж совсем головокру­жительным кажется вращение кар­ликов, которые ухитряются обер­нуться вокруг центра масс всего за 19 ч! От 19 ч до десятков тысяч лет — таково разнообразие периодов обращения  в  этой  удивительной системе звезд.

Долгое   время   шестикратная система Кастор считалась уникальной. Однако в  1964  г.  обнаружили, что хорошо известная двой­ная  звезда  Мицар  (средняя  в ручке ковша Большой Медведицы) также, по-видимому, должна быть отнесена к шестикратным системам. Действительно, уже невооруженный глаз легко обнаруживает рядом с Мицаром звездочку пятой звездной величины, названную Алькором. Обе звезды имеют общее движение в пространстве и потому, по-видимо­му,  образуют  физическую  пару звезд. В небольшой телескоп Мицар распадается на два компонента — Мицар А и Мицар В. По наблю­дениям спектра Мицара А давно установлено, что эта звезда, в свою очередь, состоит из двух компонен­тов с периодом обращения вокруг общего  центра  тяжести,  равным двадцати с половиной земным сут­кам. И вот, наконец, в 1964 г. выяснилось, что Мицар В, казав­шийся до тех пор одиночной звез­дой,  на  самом деле состоит из трех звезд. Две из них близки друг к  другу  и  обращаются  вокруг общего центра масс за 182 сут. Третий же, далеко отстоящий от них компонент  обладает  значительно большим периодом обращения, рав­ным 1 350 сут.

  В настоящее время известны де­сятки тысяч двойных звезд, так что содружества звезд — явление очень частое. Возможно, более половины всех звезд являются двойными.

ЗВЕЗДНЫЕ СКОПЛЕНИЯ

Первое знакомство всегда быва­ет внешним. Поэтому мы прежде всего обратим внимание  на  фотопортрет типич­ного шарового звездного скопления. Каждое шаровое скоп­ление—это своеобразный исполин­ский шар из звезд, или, применяя более специальную терминологию, типичная сферическая звездная сис­тема. Бросается в глаза в общем равномерная  по  всем  направле­ниям концентрация звезд к центру скопления. В сердцевине шаровых скоплений звезд так много и они так плотно расположены в прос­транстве, что на фотографиях видно лишь сплошное сияние.

Известно  более  130  шаровых звездных скоплений, хотя общее их число в нашей Галактике должно быть раз в десять большим. По­перечники  их  весьма  различны. У самых маленьких они близки к 5—10  св.  годам,  у  наибольших измеряются 500—600 св. лет. Раз­лична и масса скоплений - от нескольких десятков тысяч до сотен тысяч солнечных  масс.  Так  как различия  в  массе  у  отдельных звезд невелики, можно считать, что шаровые звездные скопления содержат десятки, сотни тысяч, а иногда и миллионы звезд!

На фотоснимках шаровых скоп­лений  мы видим не действительное распределение звезд в скоплении, а лишь проекций этого распреде­ления на плоскость. Выведены фор­мулы,  позволяющие  перейти  от видимой картины к истинной. Ока­залось, что пространственное распределение звезд в шаровых звезд­ных  скоплениях  весьма  сложно. В самых общих чертах шаровые звездные  скопления состоят  из плотного центрального ядра и короны окружающей его, в пределах которой плотность меняется сравни­тельно мало.

Подмечено, что у разных скоплений  увеличение  концентрации  к центру  различно—у  одних  оно мало, у других выражено очень резко. И еще один любопытный факт — некоторые «шары из  звезд» заметно сплюснуты. Вызвано ли это их вращением или другими при­чинами, пока неизвестно.     

Для Плеяд, типичного рассеянного, с неправильными очер­таниями звездного скопления, ха­рактерно  обилие  очень  горячих гигантских звезд. В шаровых скоплениях,  наоборот,  такие звезды редки или вовсе отсутствуют. Из­вестно  около  1200  рассеянных звездных скоплений, .Каждое из них включает в себя от нескольких  де­сятков до нескольких тысяч звезд, в основном принадлежащий к главной последовательности.

Горячие белые и голубые звезды-гиганты — образования  весьма мо­лодые,  существующие  не  более нескольких десятков миллионов лет (для звезд этот срок все равно что для человека несколько дней). Раз их нет в шаровых звездных скопле­ниях, значит, сами эти скопления  по-видимому, имеют весьма почтен­ный возраст.

О том  же свидетельствует и другой факт—в шаровых звездных скоплениях, за очень редким исклю­чением, нет газовых или пылевых туманностей.  Межзвездное  про­странство там почти идеально прозрачно. Так могло получиться, если, например, шаровые звездные скопления совершили  много оборотов вокруг ядра Галактики и каждый раз проходя через богатую глазом и пылью серединную плоскость нашей звездной системы, они оставляли там свои газы и пыль. Этот гран­диозный  очистительный  «фильтр" действовал, безотказно и, возможно, благодари, ему шары из звезд так очищены от межзвездного «мусора».

Заметим, что в шаровых скопле­ниях  найдены  сотни  переменных звезд и источники рентгеновского излучения.

МЕЖДУ ЗВЕЗДАМИ

В созвездии Ориона темными зимними ночами можно рассмотреть слабо светящееся туманное  пят­нышко. Его впервые заметили еще в 1618 г., и с тех пор на протяжении трех с половиной веков туманность Ориона служит предметом тщатель­ного исследования.

Невооруженному  глазу  туман­ность Ориона кажется  размером с Луну. На фотоснимках, получен­ных при помощи мощных телеско­пов, она занимает, всё созвездие! Это невообразимо большое и очень сложное по своей структуре межзвездное облако космических газов находится от Земли на расстоянии 1800 св. лет.

   Туманность Ориона — типичный представитель первой группы меж­звездных  объектов -  газовых ту­манностей.

Вторая, не менее многочисленная группа  межзвездных образований представлена в том же созвездии. Это знаменитая тёмная туманность, благодаря   своим   причудливым внешним  очертаниям  названная Конской  головой. Наибольший поперечник «голо-вы», в 20800 раз превышает рас­стояние от Земли до Солнца.

Конская голова состоит из мель­чайшей твердой космической пыли.Облако  пыли  задерживает  свет расположенных за ним звезд, и поэтому на фоне звездного неба некоторые из пылевых туманностей имеют вид зловещих черных пятен. Из образований  подобного  рода наиболее заметна развилка Млечно­го Пути. В темные августовские ночи,  когда созвездие Лебедя  в наших широтах близко к зениту. Млечный Путь, начиная от Дене­ба - самой яркой звезды в Лебеде, двумя сверкающими потоками нис­падает  к горизонту.  Разделение Млечного Пути только кажущееся. Оно вызвано колоссальными и срав­нительно близкими к нам облаками космической пыли, которая и созда­ет эффект развилки.

Темные и светлые туманности, подобные описанным выше, легко доступны для наблюдения. Гораздо труднее  обнаружить  необычайно разреженную и почти совершенно прозрачную газовую среду, которая называется межзвездным газом.

Известно, что межзвездный газ на самом деле представляет собой смесь, главным образом, водорода и гелия. Непрерывной дымкой за­полняют  эти  газы  межзвездное пространство нашей Галактики, и нет  направления,  в котором  бы спектрограф не обнаруживал при­сутствия разреженной межзвездной среды.

Кроме газа и пыли есть и другие формы материи, которые совсем не оставляют места для пустоты.

Солнце и звезды, особенно не­которых типов и на определенных этапах своей эволюции, выбрасы­вают в пространство великое мно­жество мельчайших частиц — кор­пускул. Среди них преобладают про­тоны и альфа-частицы, представ­ляющие собой ядра наиболее легких химических элементов — водорода и гелия. Нет сомнения в том, что межзвездное  пространство  прони­зывается  корпускулярными  пото­ками, или, как говорят, корпуску­лярным излучением звезд.

К этому  добавляются  потоки электромагнитного  излучения,  испускаемого  не  только  звездами, но и самой межзвездной средой. Часть этого излучения человеческий глаз воспринимает в виде света, другие  электромагнитные  волны, например радиоволны, могут быть уловлены с помощью тех или иных приемников. Вся эта лучистая энер­гия сплошь заполняет космос, по крайней мере в наблюдаемой нами его части. Нельзя указать ни одной точки пространства,  куда  бы не доходило в той или иной форме электромагнитное излучение.

Из закона всемирного тяготения следует, что притяжение каждого предмета может быть обнаружено на любом сколь угодно большом расстоянии. Проявление сил данной природы в пространстве называется полем этих сил. Следовательно, про­тяженность поля тяготения любого тела, строго говоря, беспредельна. Оно, если угодно, может считаться своеобразным «продолжением» лю­бого тела.

Поле  хотя  и  невещественно (т. е. не состоит из элементарных частиц вещества — электронов, про­тонов, нейтронов и т. п.), тем не менее  вполне  материально.  Ведь под  материей  понимается  любая объективная реальность, т. е. все то, что существует независимо от нас и, воздействуя на наши органы чувств, порождает в нас ощущения.

Два  тела,  состоящие  из  ве­щества, не могут одновременно за­нимать  один  и  тот  же  объем пространства. Для полей тяготения такого ограничения нет. Они совер­шенно беспрепятственно перекрыва­ют друг друга, и в данном объеме пространства могут действовать сов­местно много полей и даже разной природы (электрические, магнитные и т.д.).

Все сказанное о гравитационном поле в полной мере относится к полям электромагнитным, наличие которых в космосе также можно считать твердо установленным.

Возвращаясь к веществу между звездами,  заметим,  что  в  окру­жающей нас земной обстановке нет ничего, что хотя бы в отдаленной степени напоминало сверхразрежен­ную  межзвездную  среду.  Самым легким веществом обычно принято считать воздух. Однако по сравнению с любой межзвездной туман­ностью воздух выглядит образова­нием необычайно плотным.  Кубический сан­тиметр     комнатного     воздуха имеет  массу,  близкую  к  1  мг; плотность   туманности   Ориона в 100 000 000 000 000 000 (1017) раз меньше. Прочесть это число нелегко. Но еще труднее наглядно предста­вить себе столь большую степень разреженности вещества.

Плотность межзвездных газовых туманностей (10-17 кг/м3) так нич­тожно мала, что массой в 1 мг будет обладать газовое облако объемом в 100 км3!

В технике стремятся в некоторых случаях получить вакуум — весьма разреженное состояние газов. Путем довольно сложных ухищрений уда­ется уменьшить плотность комнат­ного воздуха в 10 млрд. раз. Но и такая «техническая пустота» все же оказывается в миллион раз более плотной,  чем любая газовая ту­манность!

Может показаться странным, почему столь разреженная среда на фотографиях кажется сплошным и даже плотным светящимся облаком, тогда как воздух настолько прозра­чен, что почти не искажает наблю­даемую сквозь него картину Вселен­ной. Причина заключается, конечно, в размерах туманностей. Они так грандиозны, что представить себе объем, ими занимаемый, нисколько не легче, чем ничтожную их плот­ность

В  среднем  туманности  имеют поперечники, измеряемые световыми годами или даже десятками све­товых лет. Это означает, что если Землю  уменьшить  до  размеров булавочной головки, то в таком масштабе туманность Ориона  должна быть изображена облаком размером с земной шар! Поэтому, несмотря на ничтожную плотность составляющих ее газов, вещества туманности Ориона все же вполне хватило бы на изготовле­нием нескольких сотен таких звезд, как наше Солнце.

Мы  находимся от туманности Ориона  на  расстоянии,  которое свет  преодолевает  за  1800  лет. Благодаря этому мы видим ее всю целиком. Если же в будущем при межзвездных перелетах путешест­венники окажутся внутри туман­ности Ориона, то заметить это будет нелегко — рассматриваемая «изнутри» туманность покажется  почти идеально прозрачной.

   Свечение  газопылевых  туман­ностей может быть вызвано тремя причинами. Во-первых, если вблизи туманности находится какая-нибудь звезда - туманность отражает ее свет, как туман, освещенный уличным фонарем. Во-вторых, в  тех  случаях,  когда  соседняя звезда весьма горячая (с темпера­турой   атмосферы  большей 20000 К), атомы газов туманности переизлучают энергию, получаемую от звезды, и процесс свечения пре­вращается в люминесценцию, имеющую сходство со свечением газов в  рекламных  трубках.  Наконец, постоянно движущиеся газовые об­лака  иногда  сталкиваются  друг с другом, и энергия столкновения частично преобразуется в излучение. Разумеется, все три причины могут действовать и совместно.

АССОЦИАЦИИ И ПОДСИСТЕМЫ

Когда мы видим на небе группу редких звезд,  объяснить  это их случайной встречей в мировом про­странстве было бы ошибкой. Скорее такие звезды имеют общее проис­хождение, и мы их застали в ран­ний период их жизни, когда они еще не успели разойтись в разные стороны.

Так рассуждал известный совет­ский астроном, академик В. А. Амбарцумян,  когда в  !947  г.  ему удалось открыть рассеянные группы очень горячих звезд-гигантов (спек­тральные классы О и В), а также переменных желтых и красных кар­ликовых звезд типа звезды Т Тельца. Первые из этих группировок В. А. Амбарцумян назвал 0-ассоциацнямй,  вторые Т-ассоциациями. Каждая  ассоциация  состоит  из нескольких десятков звезд, и размеры их колеблются в пределах от десятков до сотен световых лет. Установлено, что некоторые ассоциации медленно расширяются во все стороны.

Внутри звездных ассоциаций об­наружены большие массы водорода и пылевая материя.

По мнению В. А. Амбарцумяна н его последователей, звезды, обра­зующие ассоциации, возникли одновременно из особых, как он назы­вает, дозвездных тел. Эти тела пока решительно ничем себя непосред­ственно не проявили. Существуют ли они в действительности, покажет будущее.

Еще в 1944 г. немецкий астроном  В. Бааде  (1893—1966)  разделил звездное население Галактики  на два  типа.  К первому  он  отнес звезды, составляющие спиральные ветви  нашей звездной системы, а также звезды рассеянных звездных скоплений  и  некоторые  другие. Население второго типа по Бааде — это звезды шаровых звездных скоп­лений и звезды ядра Галактики.

Примерно в это же время  де­тальное изучение структуры Галак­тики  начал  известный  советский специалист по звездной астрономии Б. В. Кукаркин (1909—1977). В ито­ге он пришел к выводу, что в Галактике можно выделить три под­системы: плоскую, промежуточную и сферическую. Б. В. Кукаркин до­казал, что звезды с одинаковыми физическими характеристиками рас­пределяются в пространстве одинаковым способом. Так, например, горячие  гигантские  звезды  спектральных классов О и В, звезды рассеянных  скоплений,  пылевые туманности и сверхновые звезды образуют плоские подсистемы. Промежуточные подсистемы образованы новыми звездами, белыми карликами  и  некоторыми  переменными звездами. Наконец, распределение в пространстве шаровых звездных скоплений, субкарликов и некоторых типов переменных звезд характерно для сферических подсистем.

Есть прямая связь между ре­зультатами  Бааде  и  Кукаркина. Плоские  подсистемы  состоят  из населения I типа,  сферические—из населения II типа. Любопытно, что звезды  II  типа  отличаются  дефицитом металлов, что скорее всего свидетельствует о большом возрасте звезд сферических подсистем.

Описанное разделение на под­системы, по-видимому, имеет глубо­кий эволюционный смысл, раскрыть который  в деталях  предстоит  в будущем. В настоящее время принято делить население Галактики на пять подсистем,  схемы и назва­ния которых указаны на рисунке. В  следующей таблице приведен примерный возраст каждой из под­систем  в  миллиардах лет и их характерный состав.

Как уже говорилось,  главное, центральное сгущение звезд в Га­лактике называется балджем. Спи­ральная структура в балдже не проявляется. Она характерна для диска—плоской составляющей Галактики    поперечником    около 100000 св. лет. Скорее всего Га­лактика имеет две спиральные вет­ви, шириной около 3000 св.  лет каждая.

Самая центральная область Га­лактики поперечником в несколько тысяч  световых  лет—это  арена очень бурных и пока еще не вполне понятных процессов. Здесь наблю­дается движение газов со скоростью в сотни километров в секунду, и создается впечатление, что имеют место какие-то гигантские взрывы, последствия  которых  мы  видим. Пыль мешает нам рассмотреть под­робности,  но,  по  мнению  ряда астрономов,  в  центре  Галактики имеется  сверхмассивная  «черная дыра» с массой в десятки тысяч солнечных масс, окруженная втя­гивающимися в нее газами. Так ли это, решит будущее.

МЕСТНАЯ СИСТЕМА

Не только Вильям Гершель, но и некоторые его предшественники высказывали  предположение,  что часть светлых туманностей на небе представляют собой другие звездные системы, подобные Галактике. Лорд Росс даже сумел в свой огромный телескоп  рассмотреть  спиральную структуру некоторых из них. Но все это были ничем не подкрепленные догадки, и дискуссия об истинной природе «подозрительных» туман­ностей захватила почти всю первую четверть текущего века.

Лишь в 1924 г. американский астроном Эдвин Хаббл (1889—1953) при помощи 100-дюймового рефлек­тора  обсерватории  Маунт-Вилсон сумел «разложить» на отдельные звезды спиральные ветви туманнос­тей  Андромеды  и  Треугольника. Среди этих звезд оказались  це­феиды — переменные звезды, период изменения светимости которых одно­значно определяет абсолютное зна­чение их светимости. Как уже гово­рилось, зная абсолютную и видимую яркость звезды, легко вычислить расстояние до нее. Так впервые уда­лось доказать, что обе туманности лежат далеко за пределами Галактики. Постепенно, в борьбе разных идей, родилась новая отрасль нау­ки — внегалактическая астрономия.

Сегодня известно великое мно­жество  галактик.  На  некоторых участках неба их видно больше, чем звезд. До самых дальних из них луч света доходит лишь за мил­лиарды лет. Естественно, что изуче­ние  мира  галактик  началось  с ближайших из них, которые вместе с нашей Галактикой образуют Мест­ную систему из 34 галактик.

Местная система галактик зани­мает огромный объем пространства поперечником около 6 000 000 св. лет. Из 34 членов этой системы два (туманность Андромеды  и  наша Галактика) принадлежат к гигант­ским звездным системам, три (Магеллановы  Облака  и  туманность Треугольника) являются системами промежуточных размеров, а осталь­ные — типичные галактики-карлики.

Трудно сказать, насколько ха­рактерно такое сочетание звездных систем для других областей Вселенной. С больших расстояний кар­ликовые галактики просто не видны. Можно все же думать, что карли­ковых галактик во Вселенной долж­но быть не меньше, чем гигантских звездных систем.

ВЫВОДЫ

Изучение звездных систем, очевидно немыслимое в древности, могло начаться  на достаточно  высоком уровне  развития  телескопической техники. Начало было положено в ХVIII и XIX вв. громадными реф­лекторами Гершелей и Росса. На протяжении этих веков осмысливалось положение Земли в звездном мире. Окончательно открытие Галак­тики с ее реальными параметрами состоялось лишь к началу 20-х годов текущего века. С этих же лет начи­нается и  бурный рост внегалак­тической  астрономии,  чему  спо­собствовали прогресс в телескопостроении и рождение радиоастро­номии.

Ныне наблюдаемая часть Вселен­ной  предстает  как  совокупность материальных систем, начиная от кратных звезд и звездных скоплений и кончая облаками из сотен тысяч галактик.

Главная  задача  современной звездной астрономии состоит в вы­яснении деталей строения Метага­лактики, т. е. всего доступного на­шему  изучению звездного мира. От­крытие квазаров и уменьшение их численности по мере дальнейшего проникновения в глубины Вселенной, возможно, показывает, что «границы» Метагалактики близки к наблю­дению самых старых объектов ми­роздания.

То, что уже известно о мире га­лактик, показывает громадное мно­гообразие звездных систем.  Этот факт еще и еще раз убеждает нас в  неисчерпаемости  окружающего нас материального мира.

Список использованной литературы.

1.    Засов А.В., Кононович Э.В. Астрономия: Учебник для 11 класса общеобразовательных учреждений. 3-е изд. –М.: Просвещение, АО «Московские учебники», 2001.

2.    О. Струве, Б. Линдс, Э. Пилланс. Элементарная астрономия. 2-е изд. –М.: Наука 1967.

3.    Моше Д. Астрономия: Книга для учащихся. Перевод с английского/Под редакцией А. А. Гурштейна. – М.: Просвещение, 1985.

4.    Агекян Т. А. Звёзды, галактики, Метагалактика. –3-е изд. –М.: Наука, 1981.

5.    Зигель Ф.Ю. Астрономия в ёё развитии: Книга для учащихся 8-10 классов средней школы. –М.: Просвещение, 1988.


Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.