скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: VB, MS Access, VC++, Delphi, Builder C++ принципы(технология), алгоритмы программирования

Процедура Hilbert управляет глубиной рекурсии, используя соответствующий параметр. При каждом рекурсивном вызове, процедура уменьшает параметр глубины рекурсии на единицу. Если процедура вызывается с глубиной рекурсии, равной 1, она рисует простую кривую 1 порядка, показанную на рис. 5.2 слева и завершает работу. Это условие остановки рекурсии.

Например, кривая Гильберта 2 порядка состоит из четырех кривых Гильберта 1 порядка. Аналогично, кривая Гильберта 3 порядка состоит из четырех кривых 2 порядка, каждая из которых состоит из четырех кривых 1 порядка. На рис. 5.3 показаны кривые Гильберта 2 и 3 порядка. Меньшие кривые, из которых построены кривые большего размера, выделены полужирными линиями.

Следующий код строит кривую Гильберта 1 порядка:

Line -Step (Length, 0)

Line -Step (0, Length)

Line -Step (-Length, 0)

Предполагается, что рисование начинается с верхнего левого угла области и что Length — это заданная длина каждого отрезка линий.

Можно набросать черновик метода, рисующего кривые Гильберта более высоких порядков:

Private Sub Hilbert(Depth As Integer)

    If Depth = 1 Then

        Нарисовать кривую Гильберта 1 порядка

    Else

        Нарисовать и соединить 4 кривые порядка (Depth - 1)

    End If

End Sub

====89

@Рис. 5.3. Кривые Гильберта, образованные меньшими кривыми

Этот метод требует небольшого усложнения для определения направления рисования кривых. Это требуется для того, чтобы выбрать тип используемых кривых Гильберта.

Эту информацию можно передать процедуре при помощи параметров Dx и Dy для определения направления вывода первой линии в кривой. Для кривой 1 порядка, процедура рисует первую линию при помощи функции Line-Step(Dx, Dy). Если кривая имеет более высокий порядок, процедура соединяет первые две подкривых, используя функцию Line-Step(Dx, Dy). В любом случае, процедура может использовать параметры Dx и Dy для выбора направления, в котором она должна рисовать линии, образующие кривую.

Код на языке Visual Basic для рисования кривых Гильберта короткий, но сложный. Вам может потребоваться несколько раз пройти его в отладчике для кривых 1 и 2 порядка, чтобы увидеть, как изменяются параметры Dx и Dy, при построении различных частей кривой.

Private Sub Hilbert(depth As Integer, Dx As Single, Dy As Single)

    If depth > 1 Then Hilbert depth - 1, Dy, Dx

    HilbertPicture.Line -Step(Dx, Dy)

    If depth > 1 Then Hilbert depth - 1, Dx, Dy

    HilbertPicture.Line -Step(Dy, Dx)

    If depth > 1 Then Hilbert depth - 1, Dx, Dy

    HilbertPicture.Line -Step(-Dx, -Dy)

    If depth > 1 Then Hilbert depth - 1, -Dy, -Dx

End Sub

Анализ времени выполнения программы

Чтобы проанализировать время выполнения этой процедуры, вы можете определить число вызовов процедуры Hilbert. При каждой рекурсии она вызывает себя четыре раза. Если T(N) — это число вызовов процедуры, когда она вызывается с глубиной рекурсии N, то:

T(1) = 1

T(N) = 1 + 4 * T(N - 1)           для N > 1.

Если раскрыть определение T(N), получим:

T(N)    = 1 + 4 * T(N - 1)

        = 1 + 4 *(1 + 4 * T(N - 2))

        = 1 + 4 + 16 * T(N - 2)

        = 1 + 4 + 16 * (1 + 4 * T(N - 3))

        = 1 + 4 + 16 + 64 * T(N - 3)

        = ...

        = 40 + 41 + 42 + 43 + ... + 4K * T(N - K)

Раскрыв это уравнение до тех пор, пока не будет выполнено условие остановки рекурсии T(1)=1, получим:

T(N) = 40 + 41 + 42 + 43 + ... + 4N-1

Это уравнение можно упростить, воспользовавшись соотношением:

X0 + X1 + X2 + X3 + ... + XM = (XM+1 - 1) / (X - 1)

После преобразования, уравнение приводится к виду:

T(N)    = (4(N-1)+1 - 1) / (4 - 1)

        = (4N - 1) / 3

=====90

С точностью до постоянных, эта процедура выполняется за время порядка O(4N). В табл. 5.5 приведены несколько первых значений функции времени выполнения. Если вы внимательно посмотрите на эти числа, то увидите, что они соответствуют рекурсивному определению.

Этот алгоритм является типичным примером рекурсивного алгоритма, который выполняется за время порядка O(CN), где C — некоторая постоянная. При каждом вызове подпрограммы Hilbert, она увеличивает размерность задачи в 4 раза. В общем случае, если при каждом выполнении некоторого числа шагов алгоритма размер задачи увеличивается не менее, чем в C раз, то время выполнения алгоритма будет порядка O(CN).

Это поведение противоположно поведению алгоритма поиска наибольшего общего делителя. Процедура GCD уменьшает размерность задачи в 2 раза при каждом втором своем вызове, и поэтому время ее выполнения порядка O(log(N)). Процедура построения кривых Гильберта увеличивает размер задачи в 4 раза при каждом своем вызове, поэтому время ее выполнения порядка O(4N).

Функция (4N-1)/3 — это экспоненциальная функция, которая растет очень быстро. Фактически, она растет настолько быстро, что вы можете предположить, что это не слишком эффективный алгоритм. В действительности работа этого алгоритма занимает много времени, но есть две причины, по которым это не так уж и плохо.

Во-первых, ни один алгоритм для построения кривых Гильберта не может быть намного быстрее. Кривые Гильберта содержат множество отрезков линий, и любой рисующий их алгоритм будет требовать достаточно много времени. При каждом вызове процедуры Hilbert, она рисует три линии. Пусть L(N) — суммарное число линий, из которых состоит кривая Гильберта порядка N. Тогда L(N) = 3 * T(N) = 4N - 1, поэтому L(N) также порядка O(4N). Любой алгоритм, рисующий кривые Гильберта, должен вывести O(4N) линий, выполнив при этом O(4N) шагов. Существуют другие алгоритмы построения кривых Гильберта, но они занимают почти столько же времени, сколько и этот алгоритм.

@Таблица 5.5. Число рекурсивных вызовов подпрограммы Hilbert

=====91

Второй факт, который показывает, что этот алгоритм не так уж плох, заключается в том, что кривые Гильберта 9 порядка содержат так много линий, что экран большинства компьютерных мониторов при этом оказывается полностью закрашенным. Это неудивительно, так как эта кривая содержит 262.143 отрезков линий. Это означает, что вам вероятно никогда не понадобится выводить на экран кривые Гильберта 9 или более высоких порядков. На каком‑то порядке вы столкнетесь с ограничениями языка Visual Basic и вашего компьютера, но, скорее всего, вы еще раньше будете ограничены максимальным разрешением экрана.

Программа Hilbert, показанная на рис. 5.4, использует этот рекурсивный алгоритм для рисования кривых Гильберта. При выполнении программы не задавайте слишком большую глубину рекурсии (больше 6) до тех пор, пока вы не определите, насколько быстро выполняется эта программа на вашем компьютере.

Рекурсивное построение кривых Серпинского

Как и кривые Гильберта, кривые Серпинского (Sierpinski curves) — это самоподобные кривые, которые обычно определяются рекурсивно. На рис. 5.5 показаны кривые Серпинского 1, 2 и 3 порядка.

Алгоритм построения кривых Гильберта использует всего одну подпрограмму для рисования кривых. Кривые Серпинского проще рисовать, используя четыре отдельных процедуры, которые работают совместно. Эти процедуры называются SierpA, SierpB, SierpC и SierpD. Это процедуры с косвенной рекурсией — каждая процедура вызывает другие, которые затем вызывают первоначальную процедуру. Они рисуют верхнюю, левую, нижнюю и правую части кривой Серпинского, соответственно.

На рис. 5.6 показано, как эти процедуры работают совместно, образуя кривую Серпинского 1 порядка. Подкривые изображены стрелками, чтобы показать направление, в котором они рисуются. Отрезки, соединяющие четыре подкривые, нарисованы пунктирными линиями.

@Рис. 5.4. Программа Hilbert

=====92

@Рис. 5.5. Кривые Серпинского

Каждая из четырех основных кривых состоит из диагонального отрезка, затем вертикального или горизонтального отрезка, и еще одного диагонального отрезка. Если глубина рекурсии больше единицы, каждая из этих кривых разбивается на меньшие части. Это осуществляется разбиением каждого из двух диагональных отрезков на две подкривые.

Например, для разбиения кривой типа A, первый диагональный отрезок разбивается на кривую типа A, за которой следует кривая типа B. Затем рисуется без изменений горизонтальный отрезок из исходной кривой типа A. Наконец, второй диагональный отрезок разбивается на кривую типа D, за которой следует кривая типа A. На рис. 5.7 показано, как кривая типа A второго порядка образуется из нескольких кривых 1 порядка. Подкривые изображены жирными линиями.

На рис. 5.8 показано, как полная кривая Серпинского 2 порядка образуется из 4 подкривых 1 порядка. Каждая из подкривых обведена контурной линией.

Можно использовать стрелки ä и ã для обозначения типа линий, соединяющих подкривые (тонкие линии на рис. 5.8), тогда можно будет изобразить рекурсивные отношения между четырьмя типами кривых так, как это показано на рис. 5.9.

@Рис. 5.6. Части кривой Серпинского

=====93

@Рис. 5.7. Разбиение кривой типа A

Все процедуры для построения подкривых Серпинского очень похожи, поэтому мы приводим здесь только одну из них. Соотношения на рис. 5.9 показывают, какие операции нужно выполнить для рисования кривых различных типов. Соотношения для кривой типа A реализованы в следующем коде. Вы можете использовать остальные соотношения, чтобы определить, какие изменения нужно внести в код для рисования кривых других типов.

Private Sub SierpA(Depth As Integer, Dist As Single)

    If Depth = 1 Then

        Line -Step(-Dist, Dist)

        Line -Step(-Dist, 0)

        Line -Step(-Dist, -Dist)

    Else

        SierpA Depth - 1, Dist

        Line -Step(-Dist, Dist)

        SierpB Depth - 1, Dist

        Line -Step(-Dist, 0)

        SierpD Depth - 1, Dist

        Line -Step(-Dist, -Dist)

        SierpA Depth - 1, Dist

    End If

End Sub

@Рис. 5.8. Кривые Серпинского, образованные из меньших кривых Серпинского

=====94

@Рис. 5.9. Рекурсивные соотношения между кривыми Серпинского

Кроме процедур, которые рисуют каждую из основных кривых, потребуется еще процедура, которая по очереди вызывает их все для создания законченной кривой Серпинского.

Sub Sierpinski (Depth As Integer, Dist As Single)

    SierpB Depth, Dist

    Line -Step(Dist, Dist)

    SierpC Depth, Dist

    Line -Step(Dist, -Dist)

    SierpD Depth, Dist

    Line -Step(-Dist, -Dist)

    SierpA Depth, Dist

    Line -Step(-Dist, Dist)

End Sub

Анализ времени выполнения программы

Чтобы проанализировать время выполнения этого алгоритма, необходимо определить число вызовов для каждой из четырех процедур рисования кривых. Пусть T(N) — число вызовов любой из четырех основных подпрограмм основной процедуры Sierpinski при построении кривой порядка N.

Если порядок кривой равен 1, кривая каждого типа рисуется только один раз. Прибавив сюда основную процедуру, получим T(1) = 5.

При каждом рекурсивном вызове, процедура вызывает саму себя или другие процедуры четыре раза. Так как эти процедуры практически одинаковые, то T(N) будет одинаковым, независимо от того, какая процедура вызывается первой. Это обусловлено тем, что кривые Серпинского симметричны и содержат одно и то же число кривых разных типов. Рекурсивные уравнения для T(N) выглядят так:

T(1) = 5

T(N) = 1 + 4 * T(N-1)             для N > 1.

Эти уравнения почти совпадают с уравнениями, которые использовались для оценки времени выполнения алгоритма, рисующего кривые Гильберта. Единственное отличие состоит в том, что для кривых Гильберта T(1) = 1. Сравнение значений этих уравнений показывает, что TSierpinski(N) = THilbert(N+1). В конце предыдущего раздела было показано, что THilbert(N) = (4N - 1) / 3, поэтому TSierpinski(N) = (4N+1 - 1) / 3, что также составляет O(4N).

=====95

Так же, как и алгоритм построения кривых Гильберта, этот алгоритм выполняется за время порядка O(4N), но это не так уж и плохо. Кривая Серпинского состоит из O(4N) линий, поэтому ни один алгоритм не может нарисовать кривую Серпинского быстрее, чем за время порядка O(4N).

Кривые Серпинского также полностью заполняют экран большинства компьютеров при порядке кривой, большем или равном 9. При каком‑то порядке, большем 9, вы столкнетесь с ограничениями языка Visual Basic и возможностей вашего компьютера, но, скорее всего, вы еще раньше будете ограничены предельным разрешением экрана.

Программа Sierp, показанная на рис. 5.10, использует этот рекурсивный алгоритм для рисования кривых Серпинского. При выполнении программы, задавайте вначале небольшую глубину рекурсии (меньше 6), до тех пор, пока вы не определите, насколько быстро выполняется эта программа на вашем компьютере.

Опасности рекурсии

Рекурсия может служить мощным методом разбиения больших задач на части, но она таит в себе несколько опасностей. В этом разделе мы пытаемся охватить некоторые из этих опасностей и объяснить, когда стоит и не стоит использовать рекурсию. В последующих разделах приводятся методы устранения от рекурсии, когда это необходимо.

Бесконечная рекурсия

Наиболее очевидная опасность рекурсии заключается в бесконечной рекурсии. Если неправильно построить алгоритм, то функция может пропустить условие остановки рекурсии и выполняться бесконечно. Проще всего совершить эту ошибку, если просто забыть о проверке условия остановки, как это сделано в следующей ошибочной версии функции факториала. Поскольку функция не проверяет, достигнуто ли условие остановки рекурсии, она будет бесконечно вызывать сама себя.

@Рис. 5.10 Программа Sierp

=====96

Private Function BadFactorial(num As Integer) As Integer

    BadFactorial = num * BadFactorial (num - 1)

End Function

Функция также может вызывать себя бесконечно, если условие остановки не прекращает все возможные пути рекурсии. В следующей ошибочной версии функции факториала, функция будет бесконечно вызывать себя, если входное значение — не целое число, или если оно меньше 0. Эти значения не являются допустимыми входными значениями для функции факториала, поэтому в программе, которая использует эту функцию, может потребоваться проверка входных значений. Тем не менее, будет лучше, если функция выполнит эту проверку сама.

Private Function BadFactorial2(num As Double) As Double

    If num = 0 Then

        BadFactorial2 = 1

    Else

        BadFactorial2 = num * BadFactorial2(num-1)

    End If

End Function

Следующая версия функции Fibonacci является более сложным примером. В ней условие остановки рекурсии прекращает выполнение только нескольких путей рекурсии, и возникают те же проблемы, что и при выполнении функции BadFactorial2, если входные значения отрицательные или не целые.

Private Function BadFib(num As Double) As Double

    If num = 0 Then

        BadFib = 0

    Else

        BadFib = BadPib(num - 1) + BadFib (num - 2)

    End If

End Function

И последняя проблема, связанная с бесконечной рекурсией, заключается в том, что «бесконечная» на самом деле означает «до тех пор, пока не будет исчерпано стековое пространство». Даже корректно написанные рекурсивные процедуры будут иногда приводить к переполнению стека и аварийному завершению работы. Следующая функция, которая вычисляет сумму N + (N - 1) + … + 2 +1, приводит к исчерпанию стекового пространства при больших значениях N. Наибольшее возможное значение N, при котором программа еще будет работать, зависит от конфигурации вашего компьютера.

Private Function BigAdd(N As Double) As Double

    If N <= 1 Then

        BigAdd = 1

    Else

        BigAdd = N + BigAdd(N - 1)

    End If

End Function

=====97

Программа BigAdd демонстрирует этот алгоритм. Проверьте, насколько большое входное значение вы можете ввести в этой программе до того, как наступит переполнение стека на вашем компьютере.

Потери памяти

Другая опасность рекурсии заключается в потерях памяти. При каждом вызове подпрограммы, система выделяет память для локальных переменных новой процедуры. Во время сложной последовательности рекурсивных вызовов, значительная часть времени и памяти компьютера будет уходить на выделение и освобождение памяти для этих переменных во время рекурсии. Даже если это не приведет к исчерпанию стекового пространства, время, потраченное на работу с переменными, может быть значительным.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.