скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Сетевая телефония

           

Физиологические характеристики зрения.

1) острота зрения;

2) устойчивость ясного видения (различие предметов в течение длительного времени);

3) контрастная чувствительность (разные по яркости);

4) скорость зрительного восприятия (временной фактор);

5) адаптация зрения;

6) аккомодация (различие предметов при изменении расстояния)

5.2.7. Обоснование системы освещения и типа светильников

            Имеется помещение, в котором будет располагаться аппаратура и проводиться вся работа. Окон и других мест проникновения естественного света нет. Работать в этом помещении предстоит по мере надобности и вполне вероятна ситуация, когда в нём сутками никого не будет. Поэтому будет иметь место искусственное рабочее освещение. Аварийное и специальное освещение отсутствует. При необходимости подсветки тёмных мест может использоваться переносное освещение. В качестве источников света предлагается использовать люминесцентные лампы, т.к. требуется хорошее цветоразличение. Возможная схема включения люминесцентной лампы приведена на рис 4.

1 – цилиндрическая стеклянная трубка; 2 – слой люминофора; 3 – стартер в виде неоновой лампы тлеющего разряда; 4 – инертный газ; 5 – вольфрамовые электроды; 5 – контакты; 7 – балластный дроссель

Рисунок 5 Схема включения люминесцентной лампы.

5.2.8. Расчет освещения.

Предлагается следующее расположение светильников в помещении:

Рисунок 6 Расположение светильников в помещении

Наименьшая высота подвеса светильников с люминесцентными лампами Hмин=2,6 м. Высота потолка в помещение 3,5 м. поэтому высота подвеса светильников Н=3м.. Монтаж ведём светильниками ПЛВМ с двумя лампами (n=2) ЛБ-80 мощностью по 80 Вт и световым потоком Фл=5220 лм Длина светильника Lсв=1325 мм.

Расчёт ведём по контрольной точке А.

Параметры расчёта (из рис. 29): L=3 м, P1=1,5 м, P2=1,5 м

1. Определяем P' и L' для каждого ряда:

L'1=L'2=L/H=3/3=1

P'1=P1/H=1,5/3=0,5

P'2=P2/H=1,5/3=0,5

2.    По графикам линейных изолюкс [7] определяем сумму условных освещённостей Se:

e1=80 лк  для L'1 и P'1

e2=80 лк  для L'2 и P'2

Se= e1+ e2=80+80=160 лк

3.    Определяем расчётную плотность светового потока (лм/м):

Ф'=(1000ґEминґkґH)/(mґSe),

где                         Eмин – минимально нормированная освещённость, лк (по справочнику)

k – коэффициент запаса

m ‑ коэффициент добавочной освещённости

Из [7] и [8] определяем:

Eмин=300 лк

k=1,5

m=1,1

Тогда                       Ф'=(1000ґ300ґ1,5ґ3)/(1,1ґ160)=7670 лм/м

4.    Находим расчётный световой поток светящейся линии (лм)

Ф=Ф'ґL=7670ґ3=23010 лм


5.    Определяем число светильников в ряду:

N=Ф/(Флґn)=23010/(5220ґ2)=2

Таким образом в помещении будет 2 ряда светильников, по 2 светильника в каждом ряду

Длина светильника 1325 мм. Длина ряда тогда составит ” 2700 мм. Это при ширине комнаты 4 м.

            Общая потребляемая мощность 4-х светильников равна:

*   Руст=N*np*n*P1=2*2*2*80= 640 Вт

*  

Расчет заземления проведен в технологическом разделе.

5.2.9. Расчет эффективности защитного экрана.

 

Расчет эффективности защитного экрана проводится согласно  рекомендации консультанта по безопасности жизнедеятельности.

Необходимо провести оценку эффективности защитного экрана, представляющего собой кожух размерами 1,9*1,6*1,1 м из стального листа толщиной 0,5*10-3 м . Имеются технологические проемы (щели) толщиной 10-2 м. Удельное сопротивление стали r=10-7 Ом*м, магнитная проницаемость m=180 Гн/м, длина волны излучения l=6*106 м. Работа в условиях поля напряженности 200 кВ/м производится не более трех часов в сутки.

Решение: По таблице определяем допустимое значение напряженности электрического поля, при трехчасовой работе оно составляет 5-10 кВ/м.

Напряженность электрического поля, кВ/м Время пребывания человека в электрическом поле в течении суток, мин
Менее 5 Без ограничения
От 5 до 10 Не более 180
Свыше 10 до 15 Не более 90
Свыше 15 до 20 Не более 10
Свыше 20 до 25 Не более 5

Определим потребную эффективность экранирующего устройства:

Находим эквивалентный радиус экрана:

Учитывая, что , определяем волновое сопротивление поля:

где  – волновое сопротивление воздуха.

Глубина проникновения электрического поля в экран:

Фактическая эффективность экранирующего устройства равна:

где d – толщина металлического листа, м; m – наибольший размер технологических отверстий.

Должно соблюдаться условие ; в данном случае, т.е. выбранное экранирующее устройство обеспечивает требуемое соблюдение электрического поля  в рабочей зоне.

 

 

 

 

 

5.3. Чрезвычайные ситуации

5.3.1. Классификация и общие характеристики чрезвычайных ситуаций

Чрезвычайная ситуация — внешне неожиданная, внезапно возникающая обстановка, которая характеризуется резким нарушением установившегося процесса, оказывающая значительное отрицательное влияние на жизнедеятельность людей, функционирование экономики, социальную сферу и окружающую среду.

Классификация:

1. По принципам возникновения

(стихийные бедствия, техногенные катастрофы, антропогенные катастрофы, социально-политические конфликты)

2 По масштабу распространения с учетом последствий

местные (локальные); объектные; региональные; национальные; глобальные

3 По скорости распространения событий

внезапные; умеренные; плавные (ползучие); быстрораспространяющиеся

Последствия чрезвычайных ситуаций разнообразны: затопления, разрушения, радиоактивное заражения, и т.д.

Условия возникновения ЧС

  • Наличие потенциально опасных и вредных производственных факторов при развитии тех или иных процессов.
  • Действие факторов риска
  • Высвобождение энергии в тех или иных процессах;
  • Наличие токсичных, биологически активных компонентов в процессах и т.д.
  • Размещение населения, а также среды обитания.

Стадии развития ЧС.

  • Стадия накопления тех или иных видов дефекта. Продолжительность: несколько секунд — десятки лет.
  • Инициирование ЧС.          
  • Процесс развития ЧС, в результате которого происходит высвобождение факторов риска.
  • Стадия затухания. Продолжительность: несколько секунд — десятки лет.

Принципы обеспечения БЖД в ЧС.

Заблаговременная подготовка и осуществление защитных мер на территории всей страны. Предполагает накопление средств защиты для обеспечения безопасности.

Дифференцированный подход в определении характера, объема и сроков исполнения такого рода мер.

Комплексный подход к проведению защит. мер для создания безопасных и безвредных условий во всех сферах деятельности.

Безопасность обеспечивается тремя способами защиты:

  • эвакуация
  • использование средств индивидуальной защиты
  • использование средств коллективной защиты

Затраты на снижение риска аварий могут быть распределены:

  • На проектирование и изготовление систем безопасности
  • На подготовку персонала
  • На совершенствование управления в ЧС

Методика измерения риска имеет 4 подхода:

Инженерный (в основе лежат данные статистики). Определение риска осуществляется построением деревьев отказа (напр., современная космонавтика).

Модельный (построение моделей взаимодействия опасных и вредных факторов с человеком и окружающей средой).

Экспертный (вероятности различных событий, связь между ними и последствия аварий, которые определяются опросом специалистов данной области, выступающих в роле экспертов).

Социологический (опрос различных групп населения).

5.3.2. Основные положения теории ЧС

Техносфера, которая создана человеком для защиты от внешних опасностей по мере эволюции производства, сама становится источником опасности. Необходимо предусматривать ряд мер для защиты от них, а также научится прогнозировать появление такого рода опасностей.

Переход от примитивного оборудования, безопасность при эксплуатации которого решалась в рамках охраны труда, к автоматизированным системам управления производственными процессами предусматривает создание теории безопасности, которое базируется на дисциплинах: экология, охрана труда, математика, физика, специальные дисциплины.

В решении вопросов теории чрезвычайных ситуаций в свое время находилась космонавтика.

Аксиома о потенциальной опасности деятельности человека

Всякая деятельность потенциально опасна! Критерием (количественной оценкой) опасности является понятие риска.

Риск — отношение числа тех неблагоприятных событий или проявлений опасности к возможному числу за определенный период времени.

Риск гибели вследствие аварий, несчастных случаев и т.д. 1,5×10-3, у летчиков — 10-2.

Под безопасностью понимается такое состояние деятельности, при котором с некоторой вероятностью (риском) исключается реализация потенциальной опасности. Поэтому возникают вопросы, связанные с регламентированием риска.

Нормированный (приемлемый) риск равен 10-6. Фактический риск в 100 и 1000 раз превышает приемлемый. Нормативный показатель приемлемого риска не остается постоянным.

БЖД можно определить как область знаний, изучающая безопасности и защиту от них.

5.3.3. Электробезопасность.

 

 Причины электротравм.

Человек дистанционно не может определить, находится ли установка под напряжением или нет. Ток, который протекает через тело человека, действует на организм не только в местах контакта и по пути протекания тока, но и на такие системы как кровеносная, дыхательная и сердечно-сосудистая.

Возможность получения электротравм имеет место не только при прикосновении, но и через напряжение шага и через электрическую дугу.

Эл. ток, проходя через тело человека оказывает термическое воздействие, которое приводит к отекам (от покраснения, до обугливания), электролитическое (химическое), механическое, которое может привести к разрыву тканей и мышц; поэтому все электротравмы делятся на местные и общие (электроудары).

Местные электротравмы:

  • электрические ожоги (под действием электрического тока);
  • электрические знаки (пятна бледно-желтого цвета);
  • металлизация поверхности кожи (попадание расплавленных частиц металла электрической. дуги на кожу);
  • электроофтальмия (ожог слизистой оболочки глаз).

Общие эл. травмы (электроудары):

1 степень:      без потери сознания

2 степень:      с потерей

3 степень:      без поражения работы сердца

4 степень:      с поражением работы сердца и органов дыхания

Крайний случай - состояние клинической смерти (остановка работы сердца и нарушение снабжения кислородом клеток мозга). В состоянии клинической смерти находятся до 6-8 мин.

Причины поражения электрическим током (напряжение прикосновения и шаговое напряжение):

Ι.         Прикосновение к токоведущим частям, находящимся под напряжением

ΙΙ.        Прикосновение к отключенным частям, на которых напряжение может иметь место:

  • в случае остаточного заряда
  • в случае ошибочного включения электрической установки или несогласованных действий обслуживающего персонала
  • в случае разряда молнии в электрическую установку или вблизи прикосновение

к металлическим не токоведущим частям или связанного с ними электрического оборудования (корпуса, кожухи, ограждения) после перехода напряжения на них с токоведущих частей (возникновение аварийной ситуации — пробой на корпусе)

ΙΙΙ.      Поражение напряжением шага или пребывание человека в поле растекания электрического тока, в случае замыкания на землю

ΙV.      Поражение через электрическую дугу при напряжении электрической установки выше 1кВ, при приближении на недопустимо-малое расстояние

V.        Действие атмосферного электричества при газовых разрядах

VΙ.      Освобождение человека, находящегося под напряжением

Напряжение прикосновения — это разность потенциалов точек электрической цепи, которых человек касается одновременно, обычно в точках расположения рук и ног.

Напряжение шага — это разность потенциалов j1 и j2 в поле растекания тока по поверхности земли между точками, расположенными на расстоянии шага (» 0,8 м).

Специальные средства защиты.

  • заземление;
  • зануление;
  • защитное отключение.

В нашем случае используется искусственное защитное заземляющее устройство.

Технические мероприятия, обеспечивающие электробезопасность работ данного проекта.

Заземлению подлежат вся аппаратура, а также стойки, в которой эта аппаратура находится. По периметру комнаты, где располагается аппаратура, должен быть проложен контур заземления с целью защиты людей и аппаратуры от статического электричества.

Защитное заземление следует выполнять в соответствии с ПУЭ и СНиП 3.05.06-85 («Электротехнические устройства»).

5.3.4.  Противопожарная безопасность.

Противопожарные мероприятия.

Пожар – неконтролируемый процесс горения, сопровождающийся уничтожением материальных ценностей и создающий опасность для жизни людей.

Горение – химическая реакция, которая сопровождается выделением тепла и света.

Классификация помещений и зданий по степени взрывопожароопасности.

ОНТП 24–85

Все помещения и здания подразделяются на 5 категорий:

  • А –  взрывопожароопасные. Та категория, в которой осуществляются технологические процессы, связанные с выделением горючих газов, ЛВЖ с температурой вспышки паров до 28 °С, tВСП ≤ 28 °С; P – свыше 5 кПа.
  • Б – помещения, где осуществляются технологические процессы с использованием ЛВЖ с температурой вспышки свыше 28 °С, способные образовывать взрывоопасные и пожароопасные смеси при воспламенении которых образуется избыточное расчетное давление взрыва свыше 5 кПа.

tВСП > 28 °С; P – свыше 5 кПа.

  • В – помещения и здания, где обращаются технологические процессы с использованием горючих и трудно горючих жидкостей, твердых горючих веществ, которые при взаимодействии друг с другом или кислородом воздуха способны только гореть. При условии, что эти вещества не относятся ни к А, ни к Б. Эта категория пожароопасная.
  • Г – помещения и здания, где обращаются технологические процессы с использованием негорючих веществ и материалов в горючем, раскаленном или расплавленном состоянии.
  • Д – помещения и здания, где обращаются технологические процессы с использованием твердых негорючих веществ и материалов в холодном состоянии.

Основные причины пожаров: короткое замыкание, перегрузки проводов /кабелей, образование переходных сопротивлений.

Режим короткого замыкания – появление в результате резкого возрастания силы тока, электрических искр, частиц расплавленного металла, электрической дуги, открытого огня, воспламенившейся изоляции.

Причины возникновения короткого замыкания:

  • ошибки при проектировании.
  • старение изоляции.
  • увлажнение изоляции.
  • механические перегрузки.

Пожарная опасность при перегрузках – чрезмерное нагревание отдельных элементов, которое может происходить при ошибках проектирования в случае длительного прохождения тока, превышающего номинальное значение.

При 1,5 кратном превышении мощности резисторы нагреваются до 200–300 ˚С.

Пожарная опасность переходных сопротивлений – возможность воспламенения изоляции или других близлежащих горючих материалов от тепла, возникающего в месте аварийного сопротивления (в переходных клеммах, переключателях и др.).

Пожарная опасность перенапряжения – нагревание токоведущих частей за счет увеличения токов, проходящих через них, за счет увеличения перенапряжения между отдельными элементами электроустановок. Возникает при выходе из строя или изменения параметров отдельных элементов.

Пожарная опасность токов утечки – локальный нагрев изоляции между отдельными токоведущими элементами и заземленными конструкциями.

Меры по пожарной профилактике.

  • строительно–планировочные.
  • технические.
  • способы и средства тушения пожаров.
  • организационные.

Строительно–планировочные определяются огнестойкостью зданий  и сооружений (выбор материалов конструкций: сгораемые, несгораемые, трудно сгораемые) и предел огнестойкости – это количество времени в течении которого под воздействием огня не нарушается несущая способность строительных конструкций вплоть до появления первой трещины.

Все строительные конструкции по пределу огнестойкости подразделяются на 8 степеней от 1/7 часа до 2 часов.

Для помещений ВЦ используют материалы с пределом стойкости от 1–5 степеней. В зависимости от степени огнестойкости определяют наибольшие дополнительные расстояния от выходов для эвакуации при пожарах (5 степень – 50 минут).

Технические меры – это соблюдение противопожарных норм при эвакуации систем вентиляции, отопления, освещения, электрического обеспечения и т.д.

использование разнообразных защитных систем.

соблюдение параметров технологических процессов и режимов работы оборудования.

Организационные меры – проведение обучения по пожарной безопасности, соблюдение мер по пожарной безопасности.

Способы и средства тушения пожаров.

  • Снижение концентрации кислорода в воздухе.
  • Понижение температуры горючего вещества ниже температуры воспламенения.
  • Изоляция горючего вещества от окислителя.

Огнегасительные вещества: вода, песок, пена, порошок, газообразные вещества не поддерживающие горение (хладон), инертные газы, пар.

Средства огнетушения.

Ручные.

А. огнетушители химической пены.

В. огнетушитель пенный.

С. огнетушитель порошковый.

D. огнетушитель углекислотный, бром этиловый.

Противопожарные системы.

А. система водоснабжения.

В. пеногенератор.

Система автоматического пожаротушения с использованием средств автоматической сигнализации.

А. пожарный извещатель (тепловой, световой, дымовой, радиационный).

В. для ВЦ используются тепловые датчики–извещатели типа ДТЛ, дымовые, радиоизотопные типа РИД.

Система пожаротушения ручного действия (кнопочный извещатель).

Для ВЦ используются огнетушители углекислотные ОУ, ОА (создают струю распыленного бром этила) и системы автоматического газового пожаротушения, в которой используется хладон или фреон как огнегасительное средство.

Для осуществления тушения загорания водой в системе автоматического пожаротушения используются устройства спринклеры и дренчеры. Их недостаток – распыление происходит на площади до 15 м².

 

Классификация пожаров и рекомендуемые огенегасительные вещества.

Классификация пожаров

Характеристика среды, объекта

Огнегасительные средства

А

Обычные твердые и горючие материалы (дерево, бумага)

Все виды

Б

Горючие жидкости, плавящиеся при нагревании (мазут, спирты, бензин)

Распыленная вода , все виды пены, порошки, составы на основе СО2 и бромэтила

С

Горючие газы (водород, ацетилен, углеводороды)

Газовые составы, в состав которых входят инертные разбавители (азот, порошки, вода)

Д

Металлы и их сплавы (натрий, калий, алюминий, магний )

Порошки

Е

Электрической установки под напряжением

Порошки, двуокись азота, оксид азота, углекислый газ, составы бромэтил + СО2



Заключение.

IP-сеть распространяется повсеместно, и стала всеобщей и основной сетью. Одним из ключевых факторов ее развития является быстрое совершенствование стандартов и технологий. Компании уже начали испытания IP-телефонии, устанавливая шлюзы между УАТС и IP-сетью. Революция началась и первые шаги к преобразованию сетей уже проявили достоинства нового феномена.

Реальная ценность новой технологии для бизнеса будет заключаться не только в снижении расходов на оплату междугородных и международных телефонных разговоров, но и в уменьшении затрат на сетевое администрирование при одновременном повышении эффективности и продуктивности труда. IP-телефония заложила фундамент мультимедийных коммуникаций, включая видеоконференции между настольными ПК, повышающих производительность совместного труда людей в рабочих группах.

Мною рассмотрена корпоративная система связи с использованием сетевой телефонии, произведен выбор необходимой аппаратуры, произведен выбор способа доступа к удаленным объектам, проведены необходимые расчеты, построена структурная схема.

 


Список использованной литературы

1.    Позвоним через IP?. /Сети, 1997г №8

2.    Интернет-телефония./ Компьютер пресс, 1999г №10

3.    Интернет-телефония. /Компьютер пресс, 1998г №10

4.    Интеллектуальные сети связи./ Сети, 1999г №1-2

5.    IP-телефония и ТфОП./ Технологии и средства связи, 1999г №2

6.    Ахмятов З.В., Банников А.И., Морозова О.Н. Методические указания по разработке организационно–экономических вопросов в курсовом и дипломном проектировании.– Казань: КАИ, 1989.

7.    Гилберт Хелд "Ethernet Networks: Design, Implementation, Operation, Management" и "Protecting LAN Resources: A Comprehensive Guide to Securing, Protecting and Rebuilding a Network" издательство John Wiley & Sons.

8.   Статьи Internet.

Приложения


[1] Гилберт Хелд - лектор и автор книг по информационным системам. Среди его последних работ - "Ethernet Networks: Design, Implementation, Operation, Management" и "Protecting LAN Resources: A Comprehensive Guide to Securing, Protecting and Rebuilding a Network" (обе эти книги вышли в издательстве John Wiley & Sons). С ним можно связаться через Internet по адресу: 235-8068@mcimail.com.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.