скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Разработка системы теплоснабжения

 3) функционально расширить микроконтроллер возможностью программирования в системе (ISP) путем объединения Flash-технологии фирмы Atmel со стандартным скоростным последовательным интерфейсом (SPI). Это позволяет многократно модифицировать программу не только с помощью обычного программатора, но и непосредственно в системе, в конечном устройстве пользователя. При этом не требуется вводить никаких дополнительных аппаратных узлов и вспомогательных источников питания.

Результатом явилось появление нового, очень дешевого, скоростного, легкого в освоении и использовании семейства AT90S 8-разрядных микроконтроллеров марки AVR. Они представляют собой мощный инструмент, базу для создания современных высокопроизводительных и экономичных контроллеров многоцелевого назначения. Так, например, AVR используются в изделиях класса Smart Card для персональных компьютеров, в спутниковых навигационных системах для определения местоположения автомобилей на трассе, в миниатюрных автомобильных пультах дистанционного управления, в сетевых картах и на материнских платах компьютеров, в сотовых телефонах нового поколения и т.д.

Что же представляет собой микроконтроллер AT90S1200? Как он устроен и какова его архитектура? Начнем знакомство с аппаратных возможностей:

– диапазон напряжений питания, В - 2,7 - 6,0;

– тактовая частота, МГц - 0-16;

– количество линий ввода/вывода (max) - 15;

– количество инструкций - 89;

– объем Flash ROM, байт - 1К;

– объем EEPROM, байт - 64;

– количество таймеров/счетчиков - 1;

– аналоговый компаратор - есть;

– SPI (загрузка ROM и EEPROM) - есть;

– сторожевой таймер - есть;

– количество битов защиты - 2;

– число режимов энергосбережения - 2;

– число источников прерывания: внутренних/внешних - 2/1;

– тип корпуса - DIP28, SOIC28, SSOP28.

AT90S1200 имеют Flash-память программ ROM объемом 1K, которая может быть загружена как с помощью обычного программатора, так и посредством SPI интерфейса. Число циклов перезаписи ROM - не менее 1000. Два программируемых бита секретности позволяют защитить память программ от несанкционированного считывания. AT90S1200 имеют также блок энергонезависимой электрически стираемой памяти данных EEPROM объемом 64 байта. Этот тип памяти, доступный программе микроконтроллера непосредственно в ходе ее выполнения, удобен для хранения промежуточных данных, различных констант, таблиц перекодировок, калибровочных коэффициентов и т.п. EEPROM может быть загружена извне как через SPI интерфейс, так и с помощью обычного программатора. Число циклов перезаписи - не менее 100000.

Перечислим периферийные устройства AVR:

– таймер/счетчик, разрядность 8 бит;

– скоростной последовательный интерфейс SPI;

– встроенная система сброса микроконтроллера;

– асинхронный дуплексный последовательный порт UART;

– контроллер прерываний;

– внутренний тактовый генератор;

– сторожевой (WATCHDOG) таймер.

Внутренний тактовый генератор может запускаться от внешнего источника опорной частоты, от внешнего кварцевого резонатора или от внутренней RC-цепочки. Поскольку все AVR полностью статические, минимальная допустимая частота ничем не ограничена (вплоть до пошагового режима). Максимальная рабочая частота определяется конкретным типом микроконтроллера. Ограничения верхней границы частотного диапазона связаны с технологическими проблемами при производстве микросхем и будут устранены в последующих версиях кристаллов. В настоящее время контроллер AT90S1200 версии "F" может работать на частоте 16 МГц при комнатной температуре, а ограничение 12 МГц действует во всем температурном диапазоне [7].

Если времязадающим элементом для тактового генератора AVR является внутренняя RC-цепочка, то частота, на которой работает микроконтроллер, фиксирована и составляет 1 МГц. Это значение приближенное и изменяется в зависимости от величины напряжения питания и температуры корпуса. Выбор источника тактовой частоты (внутренний/внешний) программируется, правда только с помощью внешнего программатора. Как правило, AVR поставляются с фабрики уже "испеченными" для работы от внешнего источника опорной частоты, но можно заказать и другие. При этом в аббревиатуре микроконтроллера появляется литера "A", указывающая на то, что тактовый генератор данного кристалла функционирует от встроенной RC-цепочки, например, AT90S1200A-12PC. Запрограммировать микроконтроллер AT90S1200 на работу от внутреннего RC-генератора через последовательный порт SPI невозможно.

Сторожевой таймер предназначен для защиты микроконтроллера от сбоев в процессе работы. Он имеет свой собственный RC-генератор, работающий на частоте 1 МГц. Как и для основного внутреннего RC-генератора, значение 1 МГц является приближенным и зависит прежде всего от величины напряжения питания микроконтроллера и от температуры.

Порты ввода/вывода AVR имеют число независимых линий "Вход/Выход" от 5 до 32. Каждый разряд любого порта может быть запрограммирован на ввод или на вывод информации. Мощные выходные драйверы обеспечивают типовую токовую нагрузочную способность 20 мА на линию порта (втекающий ток) при максимальном значении 40 мА, что позволяет, например, непосредственно подключать к микроконтроллеру светодиоды и биполярные транзисторы. Общая токовая нагрузка на все линии одного порта не должна превышать 80 мА. Все значения приведены для напряжения питания 5В.

AVR работают в широком диапазоне питающих напряжений от 2,7 В до 6,0 В. Ток потребления в активном режиме зависит от величины напряжения питания и частоты, на которой работает микроконтроллер, и составляет менее 1 мА для 500 кГц, 5...6 мА для 5МГц и 8...9 мА для частоты 12 МГц. AVR также могут быть переведены программным путем в один из двух режимов пониженного энергопотребления. Первый - режим холостого хода (IDLE), когда прекращает работу только процессор и фиксируется содержимое памяти данных, а внутренний генератор синхросигналов, таймеры, система прерываний и сторожевой таймер продолжают функционировать. Ток потребления здесь не превышает 2,5 мА на частоте 12 МГц. Второй - режим микропотребления (SLEEP), когда сохраняется содержимое регистрового файла, но останавливается внутренний генератор синхросигналов. Выход из режима SLEEP возможен либо по сигналу сброса, либо от внешнего источника прерывания. При включенном сторожевом таймере ток потребления в этом режиме составляет около 80 мкА, а при выключенном - менее 1мкА. (Все вышеприведенные значения справедливы для напряжения питания 5 В).

Температурные диапазоны работы микроконтроллеров AVR - коммерческий (0...70С) и индустриальный (-40...+85С).

С точки зрения программиста AVR представляет собой 8-разрядный RISC микроконтроллер, имеющий быстрый Гарвардский процессор, память программ, память данных, порты ввода/вывода и интерфейсные схемы.

Гарвардская архитектура AVR реализует полное логическое и физическое разделение не только адресных пространств, но и информационных шин для обращения к памяти программ и к памяти данных. Способы адресации и доступа к ним также различны. Такое построение уже ближе к структуре скоростных цифровых сигнальных процессоров и обеспечивает существенное повышение производительности за счет:

а) одновременной работы центрального процессора как с памятью программ, так и с памятью данных;

б) расширения до 16 бит разрядной сетки шины данных памяти программ. Следующим шагом на пути увеличения быстродействия AVR является использование технологии конвейеризации, вследствие чего цикл "выборка - исполнение" команды может быть заметно сокращен, повышая тем самым производительность процессора. Например, у микроконтроллеров семейства MCS51 короткая команда выполняется за 12 тактов генератора (1 машинный цикл), в течение которого процессор последовательно считывает код операции и исполняет ее. В PIC-контроллерах фирмы Microchip уже реализована конвейерная обработка. Короткая команда выполняется у них в течение 8 периодов тактовой частоты (2 машинных цикла). За это время последовательно дешифрируется и считывается код операции, исполняется команда, фиксируется результат и одновременно считывается код следующей операции (конвейер). Поэтому одна короткая команда в общем потоке реализуется за 4 периода тактовой частоты или за один машинный цикл. В микроконтроллерах AVR тоже используется одноуровневый конвейер при обращении к памяти программ и короткая команда в общем потоке выполняется, как и в PIC-контроллерах, за один машинный цикл. Главное же отличие состоит в том, что этот цикл у AVR длится всего один период тактовой частоты по сравнению с четырьмя у PIC.

Следующая отличительная черта архитектуры микроконтроллеров AVR -регистровый файл быстрого доступа. Каждый из 32-х регистров общего назначения длиной 1 байт непосредственно соединен с арифметико-логическим устройством (ALU) процессора. Это означает, что в AVR существует 32 регистра-аккумулятора. Это позволяет в сочетании с конвейерной обработкой выполнять одну операцию в ALU за один машинный цикл. Например, два операнда извлекаются из регистрового файла, выполняется команда и результат записывается обратно в регистровый файл в течение только одного машинного цикла!

Шесть из 32-х регистров файла могут использоваться как три 16-разрядных указателя адреса при косвенной адресации данных. Один из этих указателей применяется также для доступа к таблицам перекодировок, записанных в памяти программ микроконтроллера. Использование трех 16-битных указателей существенно повышает скорость пересылки данных при работе прикладной программы.

Во время переходов к выполнению процедур обработки прерываний или подпрограмм текущее состояние программного счетчика сохраняется в стеке. Только у AT90S1200 стек реализован аппаратно с глубиной вложений, равной 3. Во всех остальных типах AVR микроконтроллеров стек формируется программно и располагается в общем адресном пространстве оперативной памяти данных. 16-разрядный указатель стека находится в общем адресном пространстве оперативной памяти и доступен для чтения и записи.

Система команд AVR весьма развита и насчитывает 89 различных инструкций. Почти все команды имеют фиксированную длину в одно слово (16 бит), что позволяет в большинстве случаев объединять в одной команде и код операции, и операнд(ы). Различают пять групп команд AVR: условного ветвления, безусловного ветвления, арифметические и логические операции, команды пересылки данных, команды работы с битами. По разнообразию и количеству реализованных инструкций AVR больше похожи на CISC, чем на RISC процессоры. Например, у PIC-контроллеров система команд насчитывает от 33 до 58 различных инструкций, а у MCS51 она составляет 111.

В целом, архитектура AVR в сочетании с регистровым файлом и расширенной системой команд позволяет в короткие сроки создавать программы с очень эффективным кодом как по скорости его выполнения, так и по компактности.

Наше краткое знакомство с новым микроконтроллерным семейством было бы неполным, если не упомянуть о имеющихся средствах поддержки разработок для AVR. Программные и аппаратные средства для новой платформы разрабатывались параллельно с самими микроконтроллерами и включают в себя компиляторы, внутрисхемные эмуляторы, отладчики, программаторы, простейшие отладочные платы-конструкторы практически на любой вкус.

Подводя итог всему вышесказанному, хочется верить, что я как разработчик привел убедительные доводы в пользу выбранной мной элементной базы. Многие отечественные специалисты уже по достоинству оценили высокую скорость работы и мощную систему команд AVR, наличие двух типов энергонезависимой памяти на одном кристалле и развивающуюся периферию. Немаловажную роль в этом сыграла и открытая политика Atmel в вопросе развития разнообразных, доступных средств поддержки разработок. Это позволяет разработчикам и производителям электронной техники надеяться на сохранение полноценной поддержки для перспективной линии AVR и в будущем, закладывая микроконтроллеры семейства AT90S в свои новые изделия. В сочетании со всеми аппаратными и программными достоинствами низкая цена на микроконтроллер явилась решающим фактором в выборе оного.

3.2. Разработка принципиальной схемы контроллера

Плата контроллера состоит из 2 разъемов, 5 микросхем MAX 232 (DD1..DD5) - микросхем преобразования сигналов ТТЛ уровня в сигналы уровня интерфейса RS-232 и наоборот и микроконтроллера AT90S1200 (DD6).

Сигналы с модема поступают на разъем Х1 контроллера. После этого они поступают на одну из микросхем преобразования сигналов ТТЛ уровня в сигналы уровня интерфейса RS-232, а потом на микроконтроллер DD6, где проходят дальнейшую обработку. В зависимости от того какая команда придет в микроконтроллер DD6, может быть произведена либо запись, либо чтение по заданному адресу. Тоже самое происходит и со стороны тепловычислителя: микроконтроллер обменивается командами с тепловычислителем через одну из микросхем DD4..DD5, т.к. тепловычислитель сопрягается с другими устройствами по интерфейсу RS-232, а микроконтроллер работает с сигналами ТТЛ уровня.

К микроконтроллеру также приходят сигналы от датчиков пожара, затопления и от охранного датчика. По сигналам от этих датчиков происходит автоматический дозвон до диспетчерского пункта и выдается соответствующее сообщение на дисплей диспетчеру, который должен предпринять меры по устранению причин, вызвавших этот сигнал.

3.3. Проектирование печатной платы контроллера

3.3.1. Определение общих требований к печатной плате

По конструкции печатные платы (ПП) делятся на следующие типы: односторонние (ОПП), двусторонние (ДПП) и многослойные (МПП). При выборе типа ПП для разрабатываемой конструкции следует учитывать технико-экономические показатели.

ОПП представляют собой диэлектрическое основание с отверстиями, пазами, вырезами и т. п., на одной стороне которого выполнен проводящий рисунок, а на другой при сборке размещают интегральные микросхемы (ИМС) и электрорадиоэлементы (ЭР-Э).

В связи с ограниченной площадью для трассировки рисунка схемы такие ПП применяют для простых электронных устройств бытового и вспомогательного назначения. Наиболее просты по конструкции и дешевы в изготовлении ОПП без металлизированных отверстий. Более сложны, но и более надежны в эксплуатации платы с металлизированными с помощью пистонов отверстиями.

ДПП имеют проводящий рисунок на обеих сторонах диэлектрического основания. Необходимые соединения печатных проводников разных сторон ДПП выполняют с помощью проволочных перемычек, металлизированных отверстий, контактных площадок. Такие платы позволяют реализовать более сложные схемы и имеют наиболее широкое применение при изготовлении узлов электронных схем. Менее распространенные ДПП на металлическом основании с нанесенным на него электроизоляционным покрытием имеют лучший теплоотвод, что существенно при большой мощности навесных элементов.

МПП состоят из чередующихся слоев изоляционного материала и проводящего рисунка. Между проводящими слоями в структуре плат могут быть или отсутствовать межслойные соединения. Существует достаточно большое разнообразие конструктивно-технологических разновидностей МПП в зависимости от наличия и характера межслойных соединений. Наибольшее распространение среди них получили МПП с металлизацией сквозных отверстий, которые не имеют ограничения на число слоев (оптимальное число до 12) и пригодны для установки элементов как со штыревыми, так и с планарными выводами. Предпочтительность использования МПП этого типа обусловлена сравнительно высокой плотностью монтажа, хорошим качеством межслойных соединений, удовлетворительной ремонтоспособностью, возможностью автоматизации и механизации как процессов изготовления самих плат, так и сборки на них узлов.

В зависимости от сложности реализуемой электрической схемы и применяемой элементной базы выбирают конструктивное исполнение платы, число слоев и плотность проводящего рисунка схемы. При выборе числа слоев платы следует иметь в виду, что наименее трудоемки и просты в изготовлении ОПП без металлизированных отверстий и приблизительно равны по затратам ОПП и ДПП о металлизированными отверстиями. Наиболее сложны и трудоемки в изготовлении МПП, число слоев которых ограничено предельно допустимым соотношением между диаметром металлизированных отверстий и толщиной платы (не менее 0,33). Ориентировочно соотношение трудоемкости изготовления ОПП без металлизированных отверстий, ДПП и МПП составляет 1:4:20.

По точности выполнения элементов (согласно ГОСТ 23751 - 86) конструкции ПП делятся на пять классов. Класс точности указывают на чертеже ПП.

Страницы: 1, 2, 3, 4, 5, 6


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.