скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Процессоры

Corporation, Нью – Йорк) "Я работал с Windows и OS/2 в сети Banyan Wines, используя OverDrive процессор без единой заминки. Моя усовер­шенствованная система с i486SX 25 МГц работает не хуже, чем системы на 50 МГц."

Стив  Симмонс:  (технический  менеджер, Даллас)

"Windows визжит от счастья, когда работает с OverDrive процессором. Расчеты на электронной таблице в Excel выполняются мгновенно."

3.9. Процессор Pentium.

В то время, когда Винод Дэм делал первые наброски, начав в июне 1989 года разработку Pentium процессора, он и не подозревал, что именно этот продукт будет одним из главных достижений фирмы Intel. Как только выполнялся очередной этап проекта, сразу начинал­ся процесс всеобъемлющего тестирования. Для тестирования была разра­ботана специальная технология, позволившая имитировать функциониро­вание Pentium процессора с использованием программируемых устройств, объединенных на 14 платах с помощью кабелей. Только когда были обна­ружены все ошибки, процессор смог работать в реальной системе. В до­полнение ко всему, в процессе разработки и тестирования Pentium про­цессора принимали активное участие все основные разработчики персо­нальных компьютеров и программного обеспечения, что немало способ­ствовало общему успеху проекта. В конце 1991 года, когда была завер­шен макет процессора, инженеры смогли запустить на нем программное обеспечение. Проектировщики начали изучать под микроскопом разводку и прохождение сигналов по подложке с целью оптимизации топологии и повышения эффективности работы. Проектирование в основном было за­вершено в феврале 1992 года. Началось всеобъемлющее тестирование опытной партии процессоров, в течение которого испытаниям подверга­лись все блоки и узлы. В апреле 1992 года было принято решение, что пора начинать промышленное освоение Pentium процессора. В качестве основной промышленной базы была выбрана 5 Орегонская фабрика. Более 3 миллионов транзисторов были окончательно перенесены на шаблоны. Началось промышленное освоение производства и доводка технических характеристик, завершившиеся через 10 месяцев, 22 марта 1993 года широкой презентацией Pentium процессора.

Объединяя более, чем 3.1 миллион транзисторов на одной крем­ниевой подложке, 32-разрядный Pentium процессор характеризуется вы­сокой производительностью с тактовой частотой 60 и 66 МГц. Его су­перскалярная архитектура использует усовершенствованные способы проектирования, которые позволяют выполнять более, чем одну команду за один период тактовой частоты, в результате чего Pentium в состоя­нии выполнять огромное количество PC-совместимого программного обес­печения быстрее, чем любой другой микропроцессор. Кроме существующих наработок программного обеспечения, высокопроизводительный ариф­метический блок с плавающей запятой Pentium процессора обеспечивает увеличение вычислительной мощности до необходимой для использования недоступных ранее технических и научных приложений, первоначально предназначенных для платформ рабочих станций.

Многочисленные  нововведения  -   характерная     особенность

Pentium процессора в виде уникального сочетания высокой производи­тельности, совместимости, интеграции данных и наращиваемости. Это включает:

- Суперскалярную архитектуру;

- Раздельное кэширование программного кода и данных;

- Блок предсказания правильного адреса перехода;

- Высокопроизводительный блок вычислений с плавающей за­пятой;

- Расширенную 64-битовую шину данных;

- Поддержку многопроцессорного режима работы;

- Средства задания размера страницы памяти;

- Средства обнаружения ошибок и функциональной избыточ­ности;

- Управление производительностью;

- Наращиваемость с помощью Intel OverDrive процессора. Cуперскалярная архитектура Pentium процессора представляет

собой совместимую только с Intel двухконвейерную индустриальную ар­хитектуру, позволяющую процессору достигать новых уровней производи­тельности посредством выполнения более, чем одной команды за один период тактовой частоты. Термин "суперскалярная" обозначает микроп­роцессорную архитектуру, которая содержит более одного вычисли­тельного блока. Эти вычислительные блоки, или конвейеры, являются узлами, где происходят все основные процессы обработки данных и ко­манд.

Появление суперскалярной архитектуры Pentium процессора представляет собой естественное развитие предыдущего семейства про­цессоров с 32-битовой архитектурой фирмы Intel. Например, процессор Intel486 способен выполнять несколько своих команд за один период тактовой частоты, однако предыдущие семейства процессоров фирмы Intel требовали множество циклов тактовой частоты для выполнения од­ной команды.

Возможность выполнять множество команд за один период такто­вой частоты существует благодаря тому, что Pentium процессор имеет два конвейера, которые могут выполнять две инструкции одновременно. Так же, как и Intel486 с одним конвейером, двойной конвейер Pentium процессора выполняет простую команду за пять этапов: предвари­тельная подготовка, первое декодирование ( декодирование команды ), второе декодирование ( генерация адреса ), выполнение и обратная выгрузка.

В результате этих архитектурных нововведений, по сравнению с предыдущими микропроцессорами, значительно большее количество ко­манд может быть выполнено за одно и то же время.

Другое важнейшее революционное усовершенствование, реализо­ванное в Pentium процессоре, это введение раздельного кэширования. Кэширование увеличивает производительность посредством активизации места временного хранения для часто используемого программного кода и данных, получаемых из быстрой памяти, заменяя по возможности обра­щение ко внешней системной памяти для некоторых команд. Процессор Intel486, например, содержит один 8-KB блок встроенной кэш-памяти, используемой одновременно для кэширования программного кода и данных.

Проектировщики фирмы Intel обошли это ограничение использо­ванием дополнительного контура, выполненного на 3.1 миллионах тран­зисторов Pentium процессора ( для сравнения, Intel486 содержит 1.2 миллиона транзисторов ) создающих раздельное внутреннее кэширование программного кода и данных. Это улучшает производительность посред­ством исключения конфликтов на шине и делает двойное кэширование доступным чаще, чем это было возможно ранее. Например, во время фа­зы предварительной подготовки, используется код команды, полученный из КЭШа команд. В случае наличия одного блока кэш-памяти, возможен конфликт между процессом предварительной подготовки команды и досту­пом к данным. Выполнение раздельного кэширования для команд и дан­ных исключает такие конфликты, давая возможность обеим командам вы­полняться одновременно. Кэш-память программного кода и данных Pentium процессора содержит по 8 KB информации каждая, и каждая ор­ганизована как набор двухканального ассоциативного КЭШа - предназна­ченная для записи только предварительно просмотренного специфициро­ванного 32-байтного сегмента, причем быстрее, чем внешний кэш. Все эти особенности расширения производительности потребовали использо­вания 64-битовой внутренней шины данных, которая обеспечивает воз­можность двойного кэширования и суперскалярной конвейерной обработки одновременно с загрузкой следующих данных. Кэш данных имеет два ин­терфейса, по одному для каждого из конвейеров, что позволяет ему обеспечивать данными две отдельные инструкции в течение одного ма­шинного цикла. После того, как данные достаются из КЭШа, они записы­ваются в главную память в режиме обратной записи. Такая техника кэ­ширования дает лучшую производительность, чем простое кэширование с непосредственной записью, при котором процессор записывает данные одновременно в кэш и основную память. Тем не менее, Pentium процес­сор способен динамически конфигурироваться для поддержки кэширова­ния с непосредственной записью.

Таким образом, кэширование данных использует два различных великолепных решения: кэш с обратной записью и алгоритм, названный MESI (модификация, исключение, распределение, освобождение) прото­кол. Кэш с обратной записью позволяет записывать в кэш без обраще­ния к основной памяти в отличие от используемого до этого непосред­ственного простого кэширования. Эти решения увеличивают производи­тельность посредством использования преобразованной шины и предупре­дительного исключения самого узкого места в системе. В свою очередь MESI-протокол позволяет данным в кэш-памяти и внешней памяти совпа­дать - великолепное решение в усовершенствованных мультипроцессор­ных системах, где различные процессоры могут использовать для рабо­ты одни и те же данные.

Блок предсказания правильного адреса перехода - это следую­щее великолепное решение для вычислений, увеличивающее производи­тельность посредством полного заполнения конвейеров командами, осно­ванное на предварительном определении правильного набора команд, ко­торые должны быть выполнены.

Pentium процессор позволяет выполнять математические вычис­ления на более высоком уровне благодаря использованию усовершенство­ванного встроенного блока вычислений с плавающей запятой, который включает восьмитактовый конвейер и аппаратно реализованные основные математические функции. Четырехтактовые конвейерные команды вычисле­ний с плавающей запятой дополняют четырехтактовую целочисленную кон­вейеризацию. Большая часть команд вычислений с плавающей запятой мо­гут выполняться в одном целочисленном конвейере, после чего подаются в конвейер вычислений с плавающей запятой. Обычные функции вычисле­ний с плавающей запятой, такие как сложение, умножение и деление, реализованы аппаратно с целью ускорения вычислений.

В результате этих инноваций, Pentium процессор выполняет ко­манды вычислений с плавающей запятой в пять раз быстрее, чем 33-МГц Intel486 DX, оптимизируя их для высокоскоростных численных вычисле­ний, являющихся неотъемлемой частью таких усовершенствованных ви­деоприложений, как CAD и 3D-графика.

Pentium процессор снаружи представляет собой 32-битовое ус­тройство. Внешняя шина данных к памяти является 64-битовой, удваи­вая количество данных, передаваемых в течение одного шинного цикла. Pentium процессор поддерживает несколько типов шинных циклов, вклю­чая пакетный режим, в течение которого происходит порция данных из 256 бит в кэш данных и в течение одного шинного цикла.

Шина данных является главной магистралью, которая передает информацию между процессором и подсистемой памяти. Благодаря этой 64-битовой шине данных, Pentium процессор существенно повышает ско­рость передачи по сравнению с процессором Intel486 DX - 528 MB/сек для 66 МГц, по сравнению со 160 MB/сек для 50 МГц процессора Intel486 DX. Эта расширенная шина данных способствует высокоскорос­тным вычислениям благодаря поддержке одновременной подпитки команда­ми и данными процессорного блока суперскалярных вычислений, благода­ря чему достигается еще большая общая производительность Pentium процессора по сравнению с процессором Intel486 DX.

Давая возможность разработчикам проектировать системы с уп­равлением энергопотреблением, защитой и другими свойствами, Pentium процессор поддерживаем режим управления системой (SMM), подобный ре­жиму архитектуры Intel SL.

Вместе со всем, что сделано нового для 32-битовой микропро­цессорной архитектуры фирмы Intel, Pentium процессор сконструирован для легкой наращиваемости с использованием архитектуры наращивания фирмы Intel. Эти нововведения защищают инвестиции пользователей пос­редством наращивания производительности, которая помогает поддержи­вать уровень продуктивности систем, основанных на архитектуре про­цессоров фирмы Intel, больше, чем продолжительность жизни отдельных компонентов. Технология наращивания делает возможным использовать преимущества большинства процессоров усовершенствованной технологи в уже существующих системах с помощью простой инсталляции средства од­нокристального наращивания производительности. Например, первое средство наращивания - это OverDrive процессор, разработанный для процессоров Intel486 SX и Intel486 DX, использующий технологию прос­того удвоения тактовой частоты, использованную при разработке мик­ропроцессоров Intel486 DX2.

Первые модели процессора Pentium работали на частоте 60 и 66 МГц и общались со своей внешней кэш-памятью второго уровня по 64-би­товой шине данных, работающей на полной скорости процессорного ядра. Hо если скорость процессора Pentium растет, то системному разработ­чику все труднее и дороже обходится его согласование с материнской платой. Поэтому быстрые процессоры Pentium используют делитель час­тоты для синхронизации внешней шины с помощью меньшей частоты. Hап­ример, у 100 МГц процессора Pentium внешняя шина работает на 66 МГц, а у 90 МГц - на 60 МГц. Процессор Pentium использует одну и ту же шину для доступа к основной памяти и к периферийным подсистемам, таким как схемы PCI.

3.10. Процессор Pentium Pro.

3.10.1. Общее описание процессора.

Pentium Pro это высокотехнологичный процессор шестого поко­ления для высокоуровневых десктопов, рабочих станций и мультипроцес­сорных серверов. Массовое производство процессора Pentium Pro, со­держащего на кристалле столько транзисторов, сколько никогда не бы­ло на серийных процессорах, сразу в нескольких вариантах стартует с 1 ноября, т.е. с самого момента объявления. Беспрецедентный случай в истории компании, да и электронной промышленности.

Hапомним некоторые его особенности. Агрессивная суперконвей­ерная схема, поддерживающая исполнение команд в произвольном поряд­ке, условное исполнение далеко наперед (на 30 команд) и трехпоточ­ная суперскалярная микроархитектура. Все эти методы могут поразить воображение, но ни один из них не является чем-то оригинальным: но­вые чипы NexGen и Cyrix также используют подобные схемы. Однако, Intel обладает ключевым превосходством. В процессоры Pentium Pro встроена вторичная кэш-память, соединенная с ЦПУ отдельной шиной. Эта кэш, выполненная в виде отдельного кристалла статического ОЗУ емкостью 256К или 512К, смонтированного на втором посадочном месте необычного двухместного корпуса процессора Pentium Pro, значительно упростила разработчикам проектирование и конструирование вычисли­тельных систем на его основе.

Реальная производительность процессора оказалась намного вы­ше 200 единиц, которые назывались в качестве запланированного стар­тового ориентира при февральском технологическом анонсировании P6.

Pentium Pro это значительный шаг вперед. И хотя в процессо­ре Pentium впервые была реализована суперскалярная форма архитекту­ры х86, но это была ограниченная реализация: в нем интегрирована па­ра целочисленных конвейеров, которые могут обрабатывать две простые команды параллельно, но в порядке следования команд в программе и без т.н. условного исполнения (наперед). Hапротив, новый процессор это трехпоточная суперскалярная машина, которая способна одновремен­но отслеживать прохождение пяти команд. Для согласования с такой вы­сокой пропускной способностью потребовалось резко улучшить схему кэ­ширования, расширить файл регистров, повысить глубину упреждающей выборки и условного исполнения команд, усовершенствовать алгоритм предсказания адресов перехода и реализовать истинную машину данных, обрабатывающую команды не по порядку, а сразу по мере готовности данных для них. Ясно, что эта схема нечто большее, чем Pentium, что и подчеркивает, по мнению Intel, суффикс Pro в имени процессора.

3.10.2. Два кристалла в одном корпусе.

Самая поразительная черта Pentium Pro - тесно связанная с процессором кэш-память второго уровня (L2), кристалл которой смонти­рован на той же подложке, что и ЦПУ. Именно так, Pentium Pro это два чипа в одном корпусе. Hа одном чипе размещено собственно ядро про­цессора, включающее два 8-Килобайтовых блока кэш-памяти первого уровня; другой чип это 256-Кб СОЗУ, функционирующее как четырехка­нальная порядково – ассоциативная кэш второго уровня.

Два этих кристалла объединены в общем 387-контактном корпу­се, но связаны линиями, не выходящими на внешние контакты. Hекото­рые компании называют такой чип корпуса МСМ (multichip module), од­нако Intel использует для него термин dual – cavity  PGA (pin – grid array). Разница слишком неосязаема и лежит, вполне вероятно, в об­ласти маркетинга, а не технологии, так как использование МСМ зарабо­тало себе репутацию дорогостоящей технологии. Но, сравнивая цены на процессоры Pentium и Pentium Pro, можно утверждать, что новая терми­нология исправит положение дел, так как P6 претендует на статус мас­сового процессора. Впервые в истории промышленности многокристальный модуль станет крупносерийным изделием.

Степень интеграции нового процессора также поражает: он со­держит 5.5 млн. транзисторов, да еще 15.5 млн. входит в состав крис­талла кэш-памяти. Для сравнения, последняя версия процессора Pentium состоит из 3.3 млн. транзисторов. Естественно, в это число не вклю­чена кэш L2, поскольку Pentium требует установки внешнего комплекта микросхем статического ОЗУ для реализации вторичной кэш-памяти.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.