скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Оптоволокно

Реферат: Оптоволокно

1. Введение

Волоконная оптика - раздел оптики, рассматривающий распространение электромагнитных волн оптического диапазона по световодам - оптическим волокнам. Конструкция отдельно взятого оптического волокна достаточно проста. Сердечник из оптически более плотного материала окружен оболочкой с меньшим коэффициентом преломления и все это покрыто защитной оболочкой (рис.1). Оптическое волокно - типичный диэлектрический волновод электромагнитных волн.

Когда поток света пересекает границу раздела двух сред с показателями преломления n1 и n2 то, как известно, наблюдаются два явления: преломление и отражение. Если световой поток пересекает границу раздела со стороны оптически более плотной среды, то угол преломления больше угла падения. С ростом угла падения преломленный луч будет прижиматься к границе раздела. И, наконец, при определенном угле падения, называемом критическим, преломленный луч начнет скользить вдоль поверхности раздела. При углах падения, больших критического, преломленный световой поток отсутствует (в идеализированном случае), поверхность раздела приобретает свойства зеркала - вся переносимая лучом энергия остается в отраженном потоке. Это явление носит название полного внутреннего отражения (рис.2). На эффекте полного внутреннего отражения построены все оптические волокна. Условно оптическим волокном называют световоды, диаметр которых менее 0.5 мм.

 Традиционные проводные линии, коаксиальные кабели, СВЧ волноводы - все они требуют дорогих и дефицитных материалов, по меньшей мере, меди. Для изготовления стекловолокна нужны окислы кремния - самые распространенные на Земле вещества. Волокна из прозрачных пластиков также почти не нуждаются в редких материалах. Таким образом, источники сырья для производства световолокон практически не ограничены. К этому следует добавить, что по диаметру оптические кабели существенно меньше металлических. Материалы оптических кабелей не подвержены коррозии и экологически безопасны.

Волоконно-оптические кабели не восприимчивы к помехам со стороны электромагнитных полей радиодиапазонов, и сами не создают таких помех. Поэтому в плане электромагнитной совместимости - это идеальные средства передачи информации. Столь же совершенны они и по электробезопасности, поскольку переносимые в них мощности очень малы.

Для того чтобы передать свет на некоторое расстояние необходимо сохранить его мощность. Снизить потери при его передаче можно, во-первых, обеспечив достаточно оптически прозрачную среду распространения, тем самым, сведя к минимуму поглощение волны, и, во-вторых, обеспечить правильную траекторию движения луча. Первая задача в настоящее время решается с помощью применения высокотехнологичных материалов, таких как чистое кварцевое стекло. Вторая задача решается с помощью закона оптики, описанного выше.

И сердцевина, и оболочка изготавливаются из стекла или пластика. Наиболее часто (вследствие лучших характеристик) используется оптоволокно типа "стекло-стекло", когда сердцевина и оболочка изготавливаются из особого кварцевого стекла. Понятно, что стекло, используемое для оболочки, должно иметь меньший показатель преломления, чем для сердцевины. Показатель преломления стекла регулируется с помощью легирующих добавок. В оптических волокнах показатели преломления сердцевины и оболочки различаются на величину порядка 1%.

Затухание в световоде, то есть потеря мощности светового сигнала происходит, в основном, по двум причинам: поглощение и рассеивание.

Поглощение связано с возбуждением в материале световода электронных переходов и резонансов. В результате этого увеличивается тепловая энергия, накапливаемая в оптическом волокне. Поглощение зависит как от свойств материала, из которого изготавливается оптоволокно, так и от длины волны источника света.

Рассеивание меньше зависит от свойств материала и, в основном, определяется нарушением геометрической формы оптического волокна. Следствием этих нарушений является то, что часть лучей покидает оптоволокно. Интенсивность рассеивания зависит не только от качества материала, из которого изготавливается сердцевина волокна, но и от качества оболочки, так как часть сигнала, вопреки геометрической оптики, распространяется в ней (это явление связано с квантовой природой света). Бороться с этим можно за счет нанесения на оболочку поглощающего покрытия.

Гибкие жгуты волокон  используются для передачи изображения и света по протяженному каналу. Область применения - медицинские и технические эндоскопы, предназначенные для визуального наблюдения внутренних органов человека и животного, а также при осмотре деталей конструкций, находящихся в труднодоступных местах (например, двигатели самолетов и автомобилей).

Жгуты для передачи изображения имеют (ориентировочно) следующие размеры:

Диаметр жгута, мм 5-100
Диаметр единичного волокна, мкм 2-500
Длина жгута, мм 100-5000

Принципиальная схема передачи изображения весьма проста: свет, отраженный от предмета, попадает на вход светопроводящего жгута, распространяется по нему и выходит с противоположного конца к приемнику излучения (например, глазу человека) (рис .3).


Диаметр волоконной жилы может быть весьма мал, т.к. явление прохождения света через стержень принципиально не меняется до тех пор, пока диаметр не станет сравнимым с длинной световой волны - в таком случае законы геометрической оптики теряют силу, и в значительной мере начинают проявляться волновые свойства света (дифракция). Проходя через оптоволокно диаметром 50 микрон, свет может претерпевать от 3000 до 20000 отражений на метр, следовательно, для обеспечения высокого светопропускания необходима гладкая поверхность и высокая прозрачность среды световода, а так же прилегающей к нему среды.

Для передачи изображения необходима плотная укладка волокон в жгуты. Если при этом два соседних волокна расположены на расстоянии менее полуволны проходящего света, то свет может просачиваться из одного волокна в соседнее (рис. 4).

Плотно расположенные в жгуте волокна соприкасаются друг с другом, и просачивание света наблюдается не только на самой линии контакта волокон, но и в области, где расстояние между ними меньше половины волны. Просачивание света значительно ухудшает контраст изображения и понижает разрешающую силу световода и прибора в целом. Для предупреждения просачивания света волокна необходимо изолировать друг от друга тонкой оболочкой из прозрачного материала с меньшим показателем преломления, чем у волокон (именно с этой целью на жилу волокна наносится оболочка с близким значением показателя преломления). Такая оболочка должна обеспечить гладкость и чистоту поверхности светопроводящей сердцевины волокна, необходимые для исключения световых потерь при полном внутреннем отражении. Изолированные волокна можно вытягивать  из цилиндрической заготовки с сердцевиной из стекла с высоким показателем преломления и оболочкой толщиной 1-2 микрона из стекла с низким показателем преломления. Так же для предотвращения просачивания на  волокно можно нанести тонкий слой металла. В многожильных световодах удобно применять стеклянные волокна, изолированные друг от друга специально подобранной пластической изоляцией. Многожильные волокна обладают хорошими механическими свойствами (гибкость, прочность). С помощью таких многожильных светопроводящих кабелей достигается большая разрешающая сила:100-200 и более линий на миллиметр.

          Светопропускание современных оптических волокон составляет не менее 90% на метр, а поглощение не боле 0.1% на метр. Число светопроводящих жил световода зависит от требуемой разрешающей силы прибора. Необходимо так же отметить, что в жгутах хорошего качества свет, вошедший через боковые поверхности, может уйти только через поверхности, параллельные оси волокна, т.е. свет, вошедший не со стороны входного торца световода, не может покинуть световод через наблюдаемый (выходной) торец. Такой свет не создаёт дымку рассеянного света на выходе, которая ухудшает полученное изображение. Приведенный факт не относится к жгутам с шероховатой поверхностью волокон, жгутов, торцы которых не перпендикулярны волокнам и для конических жгутов. Борьба с рассеянным светом не является основной проблемой при создании волоконных систем для передачи изображения (тем более, что от  внешнего рассеянного света жгут предохраняет непрозрачное покрытие ).

 

 

 

2. Общая схема технологического процесса.

Первым этапом в процессе изготовления световодов является определение подходящих по ряду параметров материалов, из которых в дальнейшем будет изготовлен световод. Для любых типов световодов необходимы материалы высокой степени однородности с максимально гладкой поверхностью раздела сердцевины и оболочки. Материал оболочки должен хорошо прилипать к сердцевине волокна. Эти два требования предотвратят чрезмерные потери света при рассеивании и при выходе света за пределы волокна. Прозрачные пластики вследствие наличия структуры рассеивают свет, что делает их не вполне пригодными для световодов большой длины, которая, правда, не характерна для волокон, передающих изображение. Хорошим материалом для оболочки и сердцевины является стекло, имеющее одно очень важное преимущество перед другими материалами - возможность широко выбора показателя преломления при помощи легирования стекла на стадии выплавки. Длина пути света в световоде больше, чем в оптических приборах, следовательно, необходимо стекло высокой прозрачности без вкраплений инородных материалов и пузырей воздуха. Высокая прозрачность стекла не всегда совместима с высоким показателем преломления: в последнем случае стекло носит желтоватый оттенок. В видимой области спектра, а именно этот диапазон оптического излучения рассматривается при переносе изображения по световоду, стеклянное волокно длиной 2 метра пропускает около 50 % света, падающего на торец жгута или  около 80 % света, прошедшего в световод. Разность этих величин обусловлена экранированием части сечения жгута изолирующими оболочками волокон и отражением света от торца жгута. Последняя проблема может быть решена нанесением на входной торец жгута просветляющей пленки, аналогичной той, что используют при просветлении оптики. Первая же проблема решается путем уменьшения толщины внешней оболочки отдельного волокна (на толщину распространяется полуволновое ограничение).

Основными материалами являются  кристаллический кварц и кварцевое стекло - различные формы оксида кремния (SiO2). В кварцевом стекле оксид кремния находится в аморфной форме и поэтому он не растрескивается при резком перепаде температур, как кристаллический кварц, имеет чрезвычайно низкий коэффициент температурного расширения и теплопроводности. В отличие от обычного стекла, которое состоит из смеси различных компонент, кварцевое стекло состоит только из оксида кремния, а количество примесей других химических элементов чрезвычайно мало. Это приводит к тому, что кварцевое стекло обладает широким спектром пропускания (через стёкла из кварца можно даже загорать), малым поглощением света (обычное оконное стекло поглощает столько же света, сколько и кварцевое стекло толщиной в 100 метров), высокой оптической гомогенностью (однородностью), стойкостью к ионизирующим излучениям и лазерному излучению высокой интенсивности, низким коэффициентом температурного расширения (примерно в 20 раз меньше по сравнению с обычным стеклом), высокой рабочей температурой (более 1200 оС, что в 4 раза больше, чем для обычного стекла). Спектр оптического пропускания синтетического кварцевого стекла Suprasil 300, оптического стекла BK 7 и обычного стекла представлены на рис.5. Спектр видимого света лежит примерно в пределах от 380 нм до 760 нм.

                             рис.5          Всё это обуславливает широкое применение кварцевого стекла в оптике.

Вторым этапом производства оптоволокна является определение метода  изготовления световода из выбранных материалов. Технологический процесс изготовления световодов на основе кварцевого стекла делится на два этапа. Первый этап - получение заготовки, которая представляет собой стеклянный стержень длиной порядка метра и диаметром около 10-20 мм. Второй – вытягивание световода из заготовки. Для этого существует несколько способов, каждый из них имеет свои преимущества и недостатки. Способы позволяют получить различный профиль показателя преломления.  Волокна для передачи изображения передают не дискретные импульсы, по этой причине следует выбрать метод, позволяющий получить ступенчатый показатель преломления (рис.6). Наиболее простой и хорошо отработанный путь – вытягивание волокон по методу двойного тигля, который подробно рассмотрен ниже. Вытянутое волокно наматывается на барабан, затем производится перемотка, в процессе которой волокно укладывается определенным образом в световодный жгут. На каждом отдельном этапе производится контроль параметров заготовки.

Особым образом обстоит дело с проверкой прочности световодов. Рассчитаны определенные стандартные усилия, при которых волокно не должно рваться. Казалось бы, достаточно просто перемотать волокно под нагрузкой, взятой с запасом. Порвалось - плохое, не порвалось - хорошее, можно использовать при меньших нагрузках. Однако не все так просто. Дело в том, что те дефекты, например трещины, которые до испытания не привели бы к порче волокна, могли развиться при тестировании, и при следующем приложении даже меньшей нагрузки волокно может порваться. Прогнозировать рост трещин весьма непросто, так как он зависит от среды, в которой находится волокно, и от механических нагрузок (в частности изгибов). Так что стопроцентную гарантию на волокно дать невозможно. Вообще, прямые испытания устойчивости свойств и надежности волокна провести трудно. Невозможно, например, оценить самопроизвольные изменения прозрачности, если характерный период таких изменений составляет порядка десяти лет. Чтобы решить эту проблему, световоды выдерживают при повышенной температуре, ускоряя старение.

Пристального внимания требует чувствительность незащищенного волокна к водяному пару. Это критическое свойство было обнаружено очень скоро после налаживания выпуска оптического волокна, но было также обнаружено и противодействие ему: непосредственное покрытие световода защитной пленкой толщиной несколько микрометров непосредственно в процессе вытягивания волокна. Эта защитная оболочка, в основном состоящая из полимера, полностью защищает световод. Она повышает также механическую прочность световода и его упругость. Кроме того, обеспечивается постоянство параметров при неблагоприятных окружающих условиях; без защитной оболочки они снижаются через несколько часов или дней.

Необходимо, конечно, принимать меры защиты в тех случаях, когда несколько световодов объединяются в одном кабеле, который в дальнейшем будет изгибаться и скручиваться. Это случается при намотке на барабан и при укладке. Конструкция кабеля должна быть такой, чтобы устранить механические перегрузки световода. Но опасно не только разрушение волокна, но и микроизгибы. Они возникают, когда светопроводящие волокна лежат на шероховатой поверхности при наличии растягивающей силы, и могут вызывать дополнительные световые потери. Это явление можно наблюдать в демонстрационном опыте, когда к светопроводящему волокну, туго, виток к витку намотанному на барабан, подводится видимый свет, например от He—Ne лазера. Весь барабан при этом излучает яркий красный свет, что указывает на световые потери, вызванные микро изгибами. Чтобы уменьшить механические нагрузки на волокна, был опробован ряд решений. Отдельные проводники свободно укладываются в поперечном сечении кабеля; в процессе изготовления кабеля следят за тем, чтобы волокна были несколько длиннее, чем кабель. При этом световоды лежат свободно в тонких гибких трубках или на них накладывается пористая изоляция. Слабым местом является оболочка волокон со ступенчатым показателем преломления. Ее показатель преломления, который лишь ненамного меньше показателя преломления сердечника, может в неблагоприятных случаях увеличиться при низких температурах, что вызовет нарушение условия полного внутреннего отражения и соответственно появятся дополнительные потери на излучение.

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.