скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Морфологический анализ цветных (спектрозональных) изображений

.           (28)

            Рассмотрим вначале задачу (28) не требуя, чтобы . Так как для любого измеримого

,              (29)

и достигается на

,                                               (30)

то, как нетрудно убедиться,

,                (31)

где звездочка * означает то же самое, что и в равенстве (14): точки xÎX, в которых выполняется равенство  могут быть произвольно отнесены к одному из множеств Ai или Aj.

            Пусть  - разбиение , в котором

                        (32)

а F: Rn-> Rn оператор, определенный условием

                         (33)

Тогда решение задачи (28) можно представить в виде

,                                        (34)

где  - индикаторная функция множества Ai (31), i=1,...,q и F -оператор, действующий в  по формуле (34) (см. сноску 4 на стр. 13).

            Нетрудно убедиться, что задача на минимум (29) с условием физичности

              (35)

имеет решение

                (36)

            Соответственно решение задачи (28) с условием физичности имеет вид

,                                   (37)

где  - индикаторная функция множества

,                (38)

            В ряде случаев для построения (34) полезно определить оператор F+: Rn-> Rn, действующий согласно формуле

                    (39)

где

, так что ,i=1,...q.  (40)

            Подытожим сказанное.

            Теорема 4. Решение задачи (28) наилучшего в приближения изображения  изображениями на искомых множествах A1,...,Aq разбиения X заданные цветами j1,..., jq соответственно, дается равенством (34), искомое разбиение A1,...,Aq определено в (31). Требование физичности наилучшего приближения приводит к решению (37) и определяет искомое разбиение формулами (38). Решение (34) инвариантно относительно любого, а (37) - относительно любого, сохраняющего физичность, преобразования, неизменяющего его цвет.

            Формой в широком смысле изображения, имеющего заданный набор цветов  j1,..., jq на некоторых множествах положительной меры A1,...,Aq разбиение поля зрения можно назвать оператор  (34), формой такого изображения является оператор F+ (37). Всякое такое изображение g(×), удовлетворяющее условиям физичности (неотрицательности яркостей), удовлетворяет уравнению F+g(×)=g(×), те из них, у которых m(Ai)>0, i=1,...,q, изоморфны, остальные имеют более простую форму.                                    n

            В заключение этого раздела вернемся к понятию формы изображения, заданного с точностью до произвольного, удовлетворяющего условиям физичности, преобразования яркости. Речь идет о форме изображения , заданного распределением цвета , при произвольном (физичном) распределении яркости, например, . Для определения формы  рассмотрим задачу наилучшего в  приближения изображения  такими изображениями

,                         (41)

            Теорема 5. Решение  задачи (41) дается равенством

,               (42)

в котором , где  . Невязка приближения

,                      (43)

(   !)                                                       n

            Определение. Формой изображения, заданного распределением цвета , назовем выпуклый, замкнутый конус изображений

или - проектор  на .

            Всякое изображение g(×),  распределение цвета которого есть j(×) и только такое изображение содержится в  и является неподвижной точкой оператора

: g(×) = g(×).                                                                                 (#)

            Поскольку на самом деле детали сцены, передаваемые распределением цвета j(×), не представлены на изображении f(×) = f(×)j(×) в той области поля зрения, в которой яркость f(x)=0, xÎX, будем считать, что  - форма любого изображения f(x) = f(x)j(x),  f(x)>0, xÎX(modm), все такие изображения изоморфны, а форма всякого изображения g(×), удовлетворяющего уравнению (#), не сложнее, чем форма f(×).

            Замечание 5. Пусть j1,..., jN - исходный набор цветов, , A1,...,AN - соответствующее оптимальное разбиение X, найденное в теореие 4 и

,                                              (34*)

- наилучшее приближение f(×). Тогда в равенстве (24)

,                                                                     (24*)

если A1,...,AN - исходное разбиение X в теореме 3. Наоборот, если A1,...,AN - заданное в теореме 3 разбиение X и f1,...,fN - собственные векторы операторов Ф1,...,ФN (23) соответственно, отвечающие максимальным собственным значениям, то f1,...,fN  и будет выполнено равенство (24), если в (34*) определить ji как цвет fi в (24), i=1,...,N.

            Проверка этого замечания не представляет затруднений.

В. Случай, когда допускаются небольшие изменения цвета в пределах каждого Ai, i=1,...,N.

            Разумеется, условие постоянства цвета на множествах Ai, i=1,...,N, на практике может выполняться лишь с определенной точностью. Последнюю можно повысить как путем перехода к более мелкому разбиению , так и допустив некоторые изменения цвета в пределах каждого Ai, i=1,...,N, например, выбрав вместо (17) класс изображений

                                                        (17*)

в котором  в (3).

            Поскольку в задаче наилучшего приближения f(×) изображениями этого класса предстоит найти  , векторы  при любом i=1,...,N, можно считать ортогональными, определив

,                   (*)

из условия минимума невязки по . После этого для каждого i=1,...,N  векторы  должны быть определены из условия

                        (**)

при дополнительном условии ортогональности

. Решение этой задачи дается в следующей лемме

            Лемма 5. Пусть  ортогональные собственные векторы оператора Ф(23), упорядоченные по убыванию собственных значений:

.

Тогда решение задачи (**) дается равенствами .

            Доказательство. Заметим, что, поскольку Фi - самосопряженный неотрицательно определенный оператор, его собственные значения неотрицательны, а его собственные векторы всегда можно выбрать так, чтобы они образовали ортогональный базис в Rn. Пусть Pi - ортогонально проецирует в Rn на линейную оболочку  собственных векторов  и

[Pi Фi Pi] - сужение оператора Pi Фi Pi на . Тогда левая часть (*) равна следу оператора [Pi Фi Pi]

, где  - j-ое собственное значение оператора  (см., например, [10]). Пусть . Тогда согласно теореме Пуанкаре, [10], , откуда следует утверждаемое в лемме.    ■

            Воспользовавшись выражениями (*) и леммой 5, найдем, что в рассматриваемом  случае  имеет  место утверждение, аналогичное теореме 3.

            Теорема 3*. Наилучшее приближение любого изображения f(×) изображениями (17*) имеет вид

,

            Где : ортогональный проектор на линейную оболочку , собственных векторов задачи

.

            Невязка наилучшего приближения равна

.                    n

            Рассмотрим теперь задачу наилучшего приближения изображения f(×) изображениями (17), в которых заданы и фиксированы векторы , и надлежит определить измеримое разбиение  и функции , как решение задачи

                                    (30)

            При любом разбиении минимум в (30) по  достигается при , определяемых равенством (20). В свою очередь, очевидно, что

                (31)

где точки , в которых выполняется равенство  могут быть произвольно включены в одно из множеств : либо в , либо в . Это соглашение отмечено звездочкой в (31).

            Таким образом доказана

            Теорема 6. Пусть  заданные векторы Rn. Решением задачи (30) является изображение  

 ,

где ортогональный проектор  определен равенством (25), а  - индикаторная функция множества (31), i=1,...,N.  Невязка наилучшего приближения равна

.                             n

            Замечание 5.  Так как при 

,

то условия (31), определяющие разбиение , можно записать в виде

,                                            (32)

показывающем, что множество  в (32) инвариантно относительно любого преобразования изображения , не изменяющего его цвет.

                                                                                                            Теоремы 3 и 6 позволяют сформулировать необходимые и достаточные условия наилучшего приближения изображения f(×) изображениями (17), при котором должны быть найдены  и ci0 , i=1,...,N, такие, что

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.