скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Морфологический анализ цветных (спектрозональных) изображений

            Следующая рекуррентная процедура, полезная для уточнения приближений, получаемых в теоремах 1,2, в некоторых случаях позволяет решать названную задачу. Пусть  - исходные векторы в задаче (14*),  - соответствующее оптимальное разбиение (14), F(1)- оператор наилучшего приближения и  - невязка. Воспользовавшись теоремой 1, определим для найденного разбиения  оптимальные векторы . Согласно выражению (13) , и соответствующий оператор наилучшего приближения П(1) (13) обеспечит не менее точное приближение f(×), чем F(1): . Выберем теперь в теореме 2 , определим соответствующее оптимальное разбиение  и построим оператор наилучшего приближения F(2). Тогда . На следующем шаге по разбиению  строим  и оператор П(3) и т.д.

            В заключение этого пункта вернемся к вопросу о построении исчерпывающего -измеримого разбиения X, отвечающего заданной функции . Выберем произвольно попарно различные векторы из f(X) и построим по формуле (15) разбиение Rn . Для каждого q=1,2,... образуем разбиение E(N(q)), множества , j=1,...,N(q), которого образованы всеми попарно различными пересечениями  множеств из . Последовательность соответствующих разбиений X , i=1,...,N(q), q=1,2...  -измеримы и  является продолжением

5.2. Приближение изображениями, цвет которых постоянен на подмножествах разбиения  поля зрения X.

            Задано разбиение , требуется определить цвет и распределение яркостей наилучшего приближения на каждом Ai,i=1,...,N.

            Для практики, как уже было отмечено, большой интерес представляет класс изображений (5), цвет которых не изменяется в пределах некоторых подмножеств поля зрения, и задачи аппроксимации произвольных изображений изображениями такого класса.

            Запишем изображение (5) в виде

                                                                (17)

где  .

            Пусть A1,...,AN - заданное разбиение X,  - индикаторная функция Ai, i=1,...,N. Рассмотрим задачу наилучшего в  приближения изображения  изображениями (17), не требуя, чтобы

                       (18)

            Речь идет о задаче аппроксимации произвольного изображения  изображениями, у которых яркость может быть произвольной функцией из , в то время, как цвет должен сохранять постоянное значение на каждом из заданных подмножеств A1,...,AN  поля зрения X, (см. Лемму 3).

            Так как 

то минимум S (19) по   достигается при

,                                                       (20)

и равен

                                                            (21)

Задача (18) тем самым сведена к задаче

.                                    (22)

            В связи с последней рассмотрим самосопряженный неотрицательно определенный оператор 

 .                                                          (23)

            Максимум (неотрицательной) квадратичной формы  на сфере в Rn, как известно, (см.,например, [11]) достигается на собственном векторе yi оператора Фi, отвечающем максимальному собственному значению >0,

,

и равен , т.е. . Следовательно, максимум в (22) равен  и достигается, например, при

            Теорема 3. Пусть A1,...,AN -заданное измеримое разбиение X, причем[9] m(Ai)>0, i=1,...,N. Решением задачи (18) наилучшего приближения изображения  изображениями g(×) (17) является изображение

                          (24)

            Операторы  ,i=1,...,N, и  - нелинейные (зависящие от f(×)) проекторы: Пi проецирует в Rn векторы  на линейное подпространство , натянутое на собственный вектор  оператора Ф(23), отвечающий наибольшему собственному значению ri,

;                                                (25)

П проецирует в  изображение  на минимальное линейное подпространство , содержащее все изображения

Невязка наилучшего приближения

                          (19*).

            Доказательство. Равентство (24) и выражение для Пi следует из (17),(20) и решения задачи на собственные значения для оператора Фi (23). Поскольку Фi самосопряженный неотрицательно определенный оператор, то задача на собственные значения (23) разрешима, все собственные значения Фi  неотрицательны и среди них ri - наибольшее.

            Для доказательства свойств операторов Пi, i=1,...,N, и П введем обозначения, указывающие на зависимость от f(×):

                                                          (26*)

Эти равенства, показывающие, что результат двукратного действия операторов Пi, i=1,...,N, и П (26) не отличается от результатата однократного их действия, позволят считать операторы (26) проекторами.

            Пусть fi - cсобственный вектор Фi , отвечающий максимальному собственному значению ri. Чтобы определить  следует решить задачу на собственные значения для оператора :

.

Поскольку rank=1,  имеет единственное положительное собственное значение, которое, как нетрудно проверить, равно ri, и ему соответствует единственный собственный вектор fi. Поэтому

.

Отсюда, в свою очередь, следует равенство (26*) для                               n

            Лемма 4. Для любого изображения  решение (24) задачи (18) наилучшего приближения единственно и является элементом .

            Доказательство. Достаточно доказать, что единственный (с точностью до положительного множителя) собственный вектор fi оператора (23), отвечающий максимальному собственному значению ri, можно выбрать так, чтобы , поскольку в таком случае будут выполнены импликации:

,

составляющие содержание леммы. Действительно, если  то согласно (23) , поскольку включение  означает, что; отсюда и из (25) получим, что ,i=1,...,N, а поэтому и в (24) .

            Убедимся в неотрицательности . В ортонормированном базисе e1,...,en, в котором , выходной сигнал i-го детектора в точке  (см. замечание 1) задача на собственные значения (23*) имеет вид , p=1,...,n,

где , .

            Так как матрица  симметрическая и неотрицательно определенная () она имеет n неотрицательных собственных значений, которым соответствуют n ортонормированных собственных векторов , а поскольку матричные элементы , то согласно теореме Фробенуса-Перрона максимальное собственное значение  - алгебраически простое (некратное), а соответствующий собственный вектор можно выбирать неотрицательным:

. Следовательно, вектор fi определен с точностью до положительного множителя , .         n

            Замечание 4.

Если  , т.е. если аппроксимируемое изображение на множествах того же разбиения имеет постоянный цвет, то в теореме 3 , .

            Наоборот, если , то

 , т.е.  определяется выражением (17), в котором  .

Итак, пусть в изображении g(×) (17) все векторы f1,.…..,fN попарно не коллинеарны, тюею цвета всех подмножеств A1,...,AN попарно различны. Тогда форма в широком смысле  изображения (17) есть множество решений уравнения

,,                                                       (27)

где , fi - собственный вектор оператора Фi, отвечающий максимальному собственному значению ri, i=1,...,N . В данном случае , если и только если выполнено равенство (27).

            Оператор П (24), дающий решение задачи наилучшего приближения  , естественно отождествить с формой в широком смысле изображения  (17).

            Заданы векторы цвета j1,..., jq, требуется определить разбиение A1,..., Aq, на множествах которого наилучшее приближение имеет соответственно цвета  j1,..., jq и оптимальные распределения яркостей [10].

            Речь идет о следующей задаче наилучшего в  приближения изображения

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.