скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Локальные сети на основе коммутаторов

Рис. 4.18. Построение виртуальных сетей на нескольких
коммутаторах с группировкой портов

Рисунок 4.18 иллюстрирует проблему, возникающую при создании виртуальных сетей на основе нескольких коммутаторов, поддерживающих технику группирования портов. Если узлы какой-либо виртуальной сети подключены к разным коммутаторам, то для соединения коммутаторов каждой такой сети должна быть выделена своя пара портов. В противном случае, если коммутаторы будут связаны только одной парой портов, информация о принадлежности кадра той или иной виртуальной сети при передаче из коммутатора в коммутатор будет утеряна. Таким образом, коммутаторы с группировкой портов требуют для своего соединения столько портов, сколько виртуальных сетей они поддерживают. Порты и кабели используются при таком способе очень расточительно. Кроме того, при соединении виртуальных сетей через маршрутизатор для каждой виртуальной сети выделяется в этом случае отдельный кабель, что затрудняет вертикальную разводку, особенно если узлы виртуальной сети присутствуют на нескольких этажах (рисунок 4.19).

Рис. 4.19. Соединение виртуальных сетей, построенных на группировании портов,
через маршрутизатор

Группирование МАС-адресов в сеть на каждом коммутаторе избавляет от необходимости их связи несколькими портами, однако требует выполнения большого количества ручных операций по маркировке МАС-адресов на каждом коммутаторе сети.

Описанные два подхода основаны только на добавлении дополнительной информации к адресным таблицам моста и не используют возможности встраивания информации о принадлежности кадра к виртуальной сети в передаваемый кадр. Остальные подходы используют имеющиеся или дополнительные поля кадра для сохранения информации и принадлежности кадра при его перемещениях между коммутаторами сети. При этом нет необходимости запоминать в каждом коммутаторе принадлежность всех МАС-адресов интерсети виртуальным сетям.

Если используется дополнительное поле с пометкой о номере виртуальной сети, то оно используется только тогда, когда кадр передается от коммутатора к коммутатору, а при передаче кадра конечному узлу оно удаляется. При этом модифицируется протокол взаимодействия "коммутатор-коммутатор", а программное и аппаратное обеспечение конечных узлов остается неизменным. Примеров таких фирменных протоколов много, но общий недостаток у них один - они не поддерживаются другими производителями. Компания Cisco предложила использовать в качестве стандартной добавки к кадрам любых протоколов локальных сетей заголовок протокола 802.10, предназначенного для поддержки функций безопасности вычислительных сетей. Сама компания использует этот метод в тех случаях, когда коммутаторы объединяются между собой по протоколу FDDI. Однако, эта инициатива не была поддержана другими ведущими производителями коммутаторов, поэтому до принятия стандарта 802.1Q фирменные протоколы маркировки виртуальных сетей будут преобладать.

Существует два способа построения виртуальных сетей, которые используют уже имеющиеся поля для маркировки принадлежности кадра виртуальной сети, однако эти поля принадлежат не кадрам канальных протоколов, а пакетам сетевого уровня или ячейкам технологии АТМ.

В первом случае виртуальные сети образуются на основе сетевых адресов, то есть той же информации, которая используется при построении интерсетей традиционным способом - с помощью физически отдельных сетей, подключаемых к разным портам маршрутизатора.

Когда виртуальная сеть образуется на основе номеров сетей, то каждому порту коммутатора присваивается один или несколько номеров сетей, например, номеров IP-сетей. (рисунок 4.20). Каждый номер IP-сети соответствует одной виртуальной сети. Конечные узлы также должны в этом случае поддерживать протокол IP. При передаче кадров между узлами, принадлежащими одной виртуальной сети, конечные узлы посылают данные непосредственно по МАС-адресу узла назначения, а в пакете сетевого уровня указывают IP-адрес своей виртуальной сети. Коммутатор в этом случае передает кадры на основе МАС-адреса назначения по адресной таблице, проверяя при этом допустимость передач по совпадению IP-номера сети пакета, содержащегося в кадре, и IP-адресу порта назначения, найденному по адресной таблице. При передачах кадра из одного коммутатора в другой, его IP-адрес переносится вместе с кадром, а значит коммутаторы могут быть связаны только одной парой портов для поддержки виртуальных сетей, распределенных между несколькими коммутаторами.

Рис. 4.20. Построение виртуальных сетей на основе сетевых адресов

В случае, когда нужно произвести обмен информацией между узлами, принадлежащими разным виртуальным сетям, конечный узел работает так же, как если бы он находился в сетях, разделенных обычным маршрутизатором. Конечный узел направляет кадр маршрутизатору по умолчанию, указывая его МАС-адрес в кадре, а IP-адрес узла назначения - в пакете сетевого уровня. Маршрутизатором по умолчанию должен быть внутренний блок коммутатора, который имеет определенный МАС-адрес и IP-адрес, как и традиционный маршрутизатор. Кроме того, он должен иметь таблицу маршрутизации, в которой указывается выходной порт для всех номеров сетей, которые существуют в общей интерсети.

В отличие от традиционных маршрутизаторов, у которых каждый порт имеет свой номер сети, коммутаторы, поддерживающие сетевой протокол для образования виртуальных сетей, назначают один и тот же номер сети нескольким портам. Кроме того, один и тот же порт может быть связан с несколькими номерами сетей, если через него связываются коммутаторы.

Часто коммутаторы не поддерживают функции автоматического построения таблиц маршрутизации, которые поддерживаются протоколами маршрутизации. такими как RIP или OSPF. Такие коммутаторы называют коммутаторами 3-го уровня, чтобы подчеркнуть их отличие от традиционных маршрутизаторов. При использовании коммутаторов 3-го уровня таблицы маршрутизации либо создаются администратором вручную (это тоже часто приемлемо при небольшом количестве виртуальных сетей и маршруте по умолчанию к полноценному маршрутизатору), либо загружаются из маршрутизатора. По последней схеме взаимодействует коммутатор Catalist 5000 компании Cisco с маршрутизаторами этой же компании.

Если же коммутатор не поддерживает функций сетевого уровня, то его виртуальные сети могут быть объединены только с помощью внешнего маршрутизатора. Некоторые компании выпускают специальные маршрутизаторы для применения совместно с коммутаторами. Примером такого маршрутизатора служит маршрутизатор Vgate компании RND, изображенный на рисунке 4.21.

Рис. 4.21. Маршрутизатор Vgate, разработанный специально для объединения виртуальных сетей

Этот маршрутизатор имеет один физический порт для связи с портом коммутатора, но этот порт может поддерживать до 64 МАС-адресов, что позволяет маршрутизатору объединять до 64 виртуальных сетей.

Последний способ организации виртуальных сетей связан с применением в сети АТМ-коммутаторов. Этот способ основан на использовании для передачи кадров каждой виртуальной сети через коммутаторы АТМ с помощью отдельного виртуального соединения. На рисунке 4.22 показан пример сети, в которой две виртуальные сети объединены с помощью АТМ-сети, состоящей из трех коммутаторов. Так как для передачи кадров каждой виртуальной сети используется отдельный виртуальный канал со своим номером SVC, то коммутатор К2, собирая переданный кадр из ячеек АТМ, знает о принадлежности кадра к той или иной виртуальной сети, а далее на основе его МАС-адреса принимает решение о передаче его на определенный порт.

Рис. 4.22. Использование отдельных виртуальных каналов в ATM-сетях
для передачи информации о виртуальных сетях

Коммутаторы К1 и К2, изображенные на рисунке, должны иметь АТМ-порты и поддерживать для реализации взаимодействия локальных сетей с сетью АТМ спецификацию LANE. Эту спецификацию должен поддерживать также хотя бы один из АТМ-коммутаторов. Так как спецификация LANE достаточно подробно описывает способ поддержки виртуальных сетей сетью АТМ-коммутаторов и пограничных коммутаторов, имеющих клиентскую часть протокола LANE, то оборудование разных производителей может работать в одной сети, образуя виртуальные сети с помощью АТМ-технологии. Спецификация LANE описывает способ взаимодействия локальных сетей и сетей АТМ на основе МАС-адресов и АТМ-адресов, не привлекая протоколы сетевого уровня. Поэтому она может быть реализована в коммутаторах, работающих только на канальном уровне. Для объединения виртуальных сетей, построенных с помощью спецификации LANE, нужны маршрутизаторы с АТМ-портами.

Управление коммутируемыми сетями

Коммутаторы - это сложные многофункциональные устройства, играющие ответственную роль в современных сетях. Поэтому поддержка функций централизованного контроля и управления, реализуемого протоколом SNMP и соответствующими агентами, практически обязательна для всех классов коммутаторов (кроме, может быть, настольных коммутаторов, предназначенных для работы в очень маленьких сетях).

Для поддержки SNMP-управления коммутаторы имеют модуль управления, в котором имеется агент, ведущий базу данных управляющей информации. Этот модуль часто выполняется на отдельном мощном процессоре, чтобы не замедлять основные операции коммутатора.

Наблюдение за трафиком

Так как перегрузки процессоров портов и других обрабатывающих элементов коммутатора могут приводить к потерям кадров, то функция наблюдения за распределением трафика в сети, построенной на основе коммутаторов, очень важна.

Однако, если сам коммутатор не имеет отдельного агента для каждого своего порта, то задача слежения за трафиком, традиционно решаемая в сетях с разделяемыми средами с помощью установки в сеть внешнего анализатора протоколов, очень усложняется.

Обычно в традиционных сетях анализатор протоколов (например, Sniffer компании Network General) подключался к свободному порту концентратора и видел весь трафик, передаваемый между любыми узлами сети.

Если же анализатор протокола подключить к свободному порту коммутатора, то он не увидит почти ничего, так как ему кадры передавать никто не будет, а чужие кадры в его порт также направляться не будут. Единственный вид трафика, который будет видеть анализатор - это трафик широковещательных пакетов, которые будут передаваться всем узлам сети. В случае, когда сеть разделена на виртуальные сети, анализатор протоколов будет видеть только широковещательный трафик своей виртуальной сети.

Для того, чтобы анализаторами протоколов можно было по-прежнему пользоваться и в коммутируемых сетях, производители коммутаторов снабжают свои устройства функцией зеркального отображения трафика любого порта на специальный порт. К специальному порту подключается анализатор протоколов, а затем на коммутатор подается команда через его модуль SNMP-управления для отображения трафика какого-либо порта на специальный порт.

Наличие функции зеркализации портов частично снимает проблему, но оставляет некоторые вопросы. Например, как просмотреть одновременно трафик двух портов, или как просматривать трафик порта, работающего в полнодуплексном режиме.

Более надежным способом слежения за трафиком, проходящим через порты коммутатора, является замена анализатора протокола на агенты RMON MIB для каждого порта коммутатора.

Агент RMON выполняет все функции хорошего анализатора протокола для протоколов Ethernet и Token Ring, собирая детальную информацию об интенсивности трафика, различных типах плохих кадров, о потерянных кадрах, причем самостоятельно строя временные ряды для каждого фиксируемого параметра. Кроме того, агент RMON может самостоятельно строить матрицы перекрестного трафика между узлами сети, которые очень нужны для анализа эффективности применения коммутатора.

Так как агент RMON, реализующий все 9 групп объектов Ethernet, стоит весьма дорого, то производители для снижения стоимости коммутатора часто реализуют только первые несколько групп объектов RMON MIB.

Управление виртуальными сетями

Виртуальные сети порождают проблемы для традиционных систем управления на SNMP-платформе как при их создании, так и при наблюдении за их работой.

Как правило, для создания виртуальных сетей требуется специальное программное обеспечение компании-производителя, которое работает на платформе системы управления, такой как, например, HP Open View. Сами платформы систем управления этот процесс поддержать не могут, в основном из-за отсутствия стандарта на виртуальные сети. Можно надеяться, что появление стандарта 802.1Q изменит ситуацию в этой области.

Наблюдение за работой виртуальных сетей также создает проблемы для традиционных систем управления. При создании карты сети, включающей виртуальные сети, необходимо отображать как физическую структуру сети, так и ее логическую структуру, соответствующую связям отдельных узлов виртуальной сети. При этом по желанию администратора система управления должна уметь отображать соответствие логических и физических связей в сети, то есть на одном физическом канале должны отображаться все или отдельные пути виртуальных сетей.

К сожалению, многие системы управления либо вообще не отображают виртуальные сети, либо делают это очень неудобным для пользователя способом.

Типовые схемы применения коммутаторов в локальных сетях

Коммутатор или концентратор?

При построении небольших сетей, составляющих нижний уровень иерархии корпоративной сети, вопрос о применении того или иного коммуникационного устройства сводится к вопросу о выборе между концентратором или коммутатором.

При ответе на этот вопрос нужно принимать во внимание несколько факторов. Безусловно, немаловажное значение имеет стоимость за порт, которую нужно заплатить при выборе устройства. Из технических соображений в первую очередь нужно принять во внимание существующее распределение трафика между узлами сети. Кроме того, нужно учитывать перспективы развития сети: будут ли в скором времени применяться мультимедийные приложения, будет ли модернизироваться компьютерная база. Если да, то нужно уже сегодня обеспечить резервы по пропускной способности применяемого коммуникационного оборудования. Использование технологии intranet также ведет к увеличению объемов трафика, циркулирующего в сети, и это также необходимо учитывать при выборе устройства.

При выборе типа устройства - концентратор или коммутатор - нужно еще определить и тип протокола, который будут поддерживать его порты (или протоколов, если идет речь о коммутаторе, так как каждый порт может поддерживать отдельный протокол).

Сегодня выбор делается между протоколами двух скоростей - 10 Мб/с и 100 Мб/с. Поэтому, сравнивая применимость концентратора или коммутатора, необходимо рассмотреть вариант концентратора с портами на 10 Мб/с, вариант концентратора с портами на 100 Мб/c, и несколько вариантов коммутаторов с различными комбинациями скоростей на его портах.

Техника применения матрицы перекрестного трафика для анализа эффективности применения коммутатора уже была рассмотрена в разделе 4.2.2. Пользуясь ею, можно оценить, сможет ли коммутатор с известными пропускными способностями портов и общей производительностью поддержать трафик в сети, заданный в виде матрицы средних интенсивностей трафика.

Рассмотрим теперь эту технику для ответа на вопрос о применимости коммутатора в сети с одним сервером и несколькими рабочими станциями, взаимодействующими только с сервером (рисунок 6.1). Такая конфигурация сети часто встречается в сетях масштаба рабочей группы, особенно в сетях NetWare, где стандартные клиентские оболочки не могут взаимодействовать друг с другом.

Матрица перекрестного трафика для такой сети имеет вырожденный вид. Если сервер подключен, например, к порту 4, то только 4-я строка матрицы и 4-ый столбец матрицы будут иметь отличные от нуля значения. Эти значения соответствуют выходящему и входящему трафику порта, к которому подключен сервер. Поэтому условия применимости коммутатора для данной сети сводятся к возможности передачи всего трафика сети портом коммутатора, к которому подключен сервер.

Если коммутатор имеет все порты с одинаковой пропускной способностью, например, 10 Мб/c, то в этом случае пропускная способность порта в 10 Мб/c будет распределяться между всеми компьютерами сети. Возможности коммутатора по повышению общей пропускной способности сети оказываются для такой конфигурации невостребованными. Несмотря на микросегментацию сети, ее пропускная способность ограничивается пропускной способностью протокола одного порта, как и в случае применения концентратора с портами 10 Мб/с. Небольшой выигрыш при использовании коммутатора будет достигаться лишь за счет уменьшения количества коллизий - вместо коллизий кадры будут просто попадать в очередь к передатчику порта коммутатора, к которому подключен сервер.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.