скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Классификация оперативной памяти

3.3.DIMM

Аббревиатура DIMM расшифровывается как Dual Inline Memory Module (Модуль памяти с двойным расположением выводов). В модуле DIMM имеетс 168 контактов, которые расположены с двух сторон платы и разделены изолятором. Также изменились и разъемы для DIMM-модулей.

Следует отметить, что разъем DIMM имеют много разновидностей DRAM. К тому же вплоть до последнего времени модули DIMM не имели средств самоконфигурирования (в отличие от SIMM-модулей). Поэтому для облегчения выбора нужного модул пользователям на материнских платах разные типы DIMM имеют от одного до трех вырезов на модуле памяти. Они предотвращают от неправильного выбора и неправильной установки модулей памяти.

В следующих подразделах рассмотрим типы DRAM, имеющие разъем DIMM.


3.3.1. SDRAM.

Рис. B.3.6. Модуль памяти SDRAM

Аббревиатура SDRAM расшифровывается как Synchronic DRAM (динамическое ОЗУ с синхронным интерфейсом). Этим они отличаются от FPM и EDO DRAM, работающих по асинхронному интерфейсу.

С асинхронным интерфейсом процессор должен ожидать, пока DRAM закончит выполнение своих внутренних операций. Они обычно занимают 60 нс. В DRAM с синхронным управлением происходит защелкивание информации от процессора под управлением системных часов. Триггеры запоминают адреса, сигналы управления и данных. Это позволяет процессору выполнять другие задачи. После определенного количества циклов данные становятся доступными, и процессор может их считывать. Таким образом, уменьшается время просто процессора во время регенерации памяти.

Другое преимущество синхронного интерфейса —это то, что системные часы задают временные границы, необходимые DRAM. Это исключает необходимость наличия множества стробирующих импульсов, обязательных дл асинхронного интерфейса. Это, во-первых, уменьшает трафик по локальной шине (нет “лишних”сигналов), а во-вторых, позволяет упростить операции ввода-вывода (в операциях пересылки центральный процессор либо контроллер DMA уже не должен выделять полезную информацию среди служебных стробирующих импульсов и битов четности). В-третьих, все операции ввода/вывода на локальной шине стали управляться одними и теми же синхроимпульсами, что само по себе хорошо.

Хотя SDRAM появилась уже давно, использование ее тормозилось высокой (на 33%) ценой по сравнению с EDO RAM. “Звездный час”SDRAM настал в 1997 году, после появления чипсета 440BX, работающего на частоте 100 МГц. Вследствие этого доля рынка SDRAM за год выросла в два раза (с 25% в 1997 году до 50% в 1998 году.)

В настоящее время выпускаютс модули SDRAM, работающие на частотах 100 и 133 МГц. Также разработаны SDRAM на частоты 143 МГц и выше.

3.3.2. ESDRAM.

Следующим оригинальным решением, увеличившим частоту работы SDRAM, явилось создание кэша SRAM на самом модуле динамического ОЗУ. Так появилась спецификация Enhanced SDRAM

(ESDRAM). Это позволило поднять частоту работы модуля до 200 МГц. Назначение кэша на модуле точно такое же, что и кэш второго уровн процессора —хранение наиболее часто используемых данных.


3.3.3. SDRAM II.

Рис. B.3.7. Модуль памяти DDR DRAM (SDRAM II)

Спецификация SDRAM II (или DDR SDRAM) не имеет полной совместимости с SDRAM. Эта спецификаци позволяет увеличить частоту работы SDRAM за счет работы на обеих границах тактового сигнала, то есть на подъеме и спаде. Однако SDRAM

II использует тот же 168-ми контактный разъем DIMM.

3.3.4. SLDRAM.

Как и SDRAM II, эта спецификаци использует обе границы тактового сигнала и имеет в себе SRAM. Однако благодаря протоколу SynchLink Interface эта память способна работать на частоте до 400 МГц.


3.3.5. Память от Rambus (RDRAM, RIMM).

Рис. B.3.8. Модуль памяти RDRAM (RIMM)

RDRAM представляет собой спецификацию, созданную и запатентованную фирмой Rambus, Inc. За счет использования обоих границ сигнала достигается частота работы памяти в 800 МГц.

Подсистема памяти Direct Rambus включает в себя следующие компоненты [Евгений Калугин. Типы памяти.//”Подводная лодка”, январь 2000 г., стр. 166—.]:

8.    Direct Rambus Controller.

9.    Direct Rambus Channel.

10.   Direct Rambus Connector.

11.   Direct Rambus RIMM(tm).

12.   Direct Rambus DRAMs.

Рассмотрим эти компоненты поподробнее:

1. Контроллер Direct Rambus —это главна шина подсистемы памяти. Он помещается на чипе логики, как и PC-чипсет, микропроцессор, графический контроллер. Физически можно поместить до четырех Direct Rambus —контроллеров на одном чипе логики. Контроллер —это интерфейс между чипом логики и памятью Rambus, и в его обязанности входит генерация запросов, управление потоком данных, и ряд других функций.

2. Direct Rambus Channel создает электрические соединения между Rambus Controller и чипами Direct RIMM. Работа канала основана на 30-ти сигналах, составляющих высокоскоростную шину. Эта шина работает на частоте 400 МГц и, за счет передачи данных на обеих границах тактового сигнала, позволяет передавать данные на 800 МГц. Два канала данных (шириной в байт каждый) позволяет получать пиковую пропускную способность в 1,6 Гбайт/с. Канал соответствует форм-фактору SDRAM.

3. Разъем Direct Rambus —это разъем со 168 контактами. Контакты расположены на двух сторонах модуля, по 84 с каждой стороны. Разъем представляет собой низкоиндуктивный интерфейс между каналом на модуле RIMM и каналом на материнской плате.

4. Модуль RIMM — это модуль памяти, который включает в
себя один или более чипов и организует непрерывность канала. По существу, RIMM образует непрерывный канал на пути от одного разъема к другому. Поэтому оставлять свободные разъемы недопустимо

Существуют специальные модули только с каналом, называемые continuity modules. Они не содержат чипов памяти и предназначены для заполнени свободных посадочных мест.

Модули RIMM имеют размеры, сходные с геометрическими размерами SDRAM DIMMs. Модули RIMM поддерживают SPD, которые используются на DIMM'ах SDRAM. В отличие от SDRAM DIMM, Direct Rambus может содержать любое целое число чипов Direct RDRAM (до максимально возможного).

Один канал Direct Rambus максимум может поддерживать 32 чипа DRDRAM. На материнской плате может использоваться до трех RIMM модулей. Используются 64 Мбит, 128 Мбит и 256 Мбит устройства.

Чтобы расширить память сверх 32-х устройств, могут использоваться два чипа повторителя. С одним повторителем канал может поддерживать 64 устройства с 6-ю RIMM модулями, а с двумя —128 устройств на 12 модулях.

5. Чипы DRDRAM. Чипы DRDRAM составляют часть подсистемы Rambus, запоминающие данные. Все устройства в системе электрически расположены в канале между контроллером и терминатором. Устройства Direct Rambus могут только отвечать на запросы контроллера, который делает их шину подчиненной или отвечающей. Устройства включают в себя статическое и динамическое ОЗУ.

4. Оперативная кэш-память.

Как уже отмечалось, для динамической оперативной памяти необходима периодическая ее регенерация. В компьютере это осуществляетс централизовано: организуется цикл прямого чтения/записи содержимого динамического ОЗУ. Эта операция осуществляется с помощью специальной микросхемы. В процессе регенерации микропроцессор переходит в режим ожидания, что снижает производительность системы не менее чем на 5%.

Минимальный цикл обращени микропроцессора к оперативной памяти состоит из двух состояний шины. Подсчитано, что около 70% всех обращений процессора к шине компьютера составляет чтение команд, 20% — чтение и запись данных, и только оставшиеся 10% составляют обращения к устройствам ввода-вывода. Поэтому введение даже одного состояния ожидания при обращении к памяти значительно снижает производительность компьютера. Таким образом, существенный рост быстродействия системы может быть достигнут только при сбалансированной работе подсистемы памяти.


Для старых персональных компьютеров (на основе микропроцессоров Intel i8088, i8086, i80286 и процессоре i80386/20 МГц) была характерна одноуровневая система организации памяти. По этой системе разработчики были вынуждены устанавливать дешевые DRAM с быстродействием 80 —120 нс, либо применять дорогостоящие SRAM с быстродействием 40 —60 нс. Для сокращени среднего времени ожидания при обращении к операционной системе использовались (и используются в настоящее время) методы интерливинга и страничной организации.

Рис. B.4.1. Система с интерливингом памяти.

В системе с интерливингом —расслоением адресов ячеек памяти —весь объем памяти делится на два или несколько банков. Двойные слова с последовательными адресами располагаются в разных банках. Во время считывания информации из оперативной памяти за один цикл можно организовать параллельное извлечение информации из разных блоков, что уменьшает количество циклов ожидания.


Преимущество систем с интерливингом проявляется при обращении к последовательным ячейкам и считывании сразу 32-х бит информации. В противном случае интерливинг не дает никаких преимуществ.

Рис. B.4.2. Система со страничной организации памяти.

В системах со страничной организацией памяти вся память делится на фиксированные по размеру зоны адресов —страницы. Обращение к памяти в пределах страницы происходит без ожидания, а при смене страницы —как обычно, с состояниями ожидания.

При страничной организации память делится на строки и столбцы. Адрес обращения к двойному слову содержит 9-ти разрядный номер строки и 9-ти разрядный номер столбца. При обращении к странице сигнал выбора номера строки поддерживается неизменным, а сигнал выбора столбца переставляется на столбец, откуда нужно прочитать данные.

Страничная организация памяти требует для своей реализации особые микросхемы. Они имеют специальный режим – страничный доступ со статической выборкой столбцов (static column decode).

Для полной реализации потенциальных скоростных возможностей микропроцессоров используется многоуровневая иерархическа память. Она включает в себя быстродействующую кэш-память – SRAM. Кэш-память состоит из памяти данных, построенная на микросхемах SRAM, и контроллера кэша. В кэш-памяти хранитс информация, копируемая из основной оперативной памяти. Каждый раз при обращении микропроцессора к памяти контроллер кэш-памяти проверяет наличие данных в кэше. Если эти данные в кэше есть (“попадание”), то микропроцессор получает данные из кэша. Если этих данных нет (“промах”), выполняется обычный цикл обращения к оперативной памяти DRAM.

Основным фактором, определяющим вероятность попадания, является емкость кэш-памяти. Как правило, при объеме кэша в 2 Кбайта вероятность попадания составляет от 50 до 60%. Поскольку размер кэш-памяти на современных компьютерах превышает 256 Кбайт, то вероятность попадания будет выше 90% (дл компьютеров с объемом памяти ~ 16 Мбайт.)

Для реализации кэш-памяти в настоящее время разработаны эффективные однокристальные контроллеры. Наиболее широкое распространени получили контроллеры i82385 фирмы Intel и A38152 фирмы Asustec Microsystems.

Контроллер i82385 поддерживает 32 Кбайта кэш-памяти, и может работать в двух конфигурациях:

13.   Кэш-память с прямым отображением.

14.   Двухканальная модульно-ассоциативна кэш-память.


Первая конфигурация характеризуетс простотой реализации, однако она оказываетс неэффективной при работе в мультизадачных системах. В двухканальной реализации кэш-память разбивает все 4 Гбайтное адресное пространство на 262144 страницы по 16 Кбайт. 32-х разрядный физический адрес состоит из четырнадцатиразрядного адреса, определяющего информацию в кэш-памяти, и восемнадцатиразрядного тега, определяющего номер страницы. Каждый адрес оперативной памяти может быть отображен в одну из двух ячеек кэш-памяти. На рисунке B.4.3 рассматриваетс образование физического адреса в двухканальной модульно-ассоциативной памяти.

Рис. B.4.3. Двухканальна модульно-ассоциативная кэш-память.

Особенность контроллера кэш-памяти – обеспечение возможности параллельной работы микропроцессора с кэш-памятью и периферийных устройств с оперативной памятью в режиме прямого доступа. При записи данных по адресам, находящихся в кэше, контроллер ликвидирует копии этих блоков в кэше. Всю работу по синхронизации данных в DRAM и кэше берет на себя этот контроллер.

Однокристальный контроллер кэш-памяти фирмы ASUSTEC, совместно с памятью данных 32 Кбайта обеспечивает вероятность попадания более 95%. Это достигается благодаря использованию четырехканального модульно-ассоциативного обращения, который отображает адрес оперативной памяти в одну из четырех ячеек кэш-памяти. При этом, вследствие организации последовательного обращения к памяти данных, требуется подключени всего одного банка памяти данных.

Контроллер A38152 фирмы Asustec имеет аппаратные и программные средства, обеспечивающие связанность информации: логика слежения за шиной, которая обеспечивает ликвидацию копий блоков в кэш-памяти, задани области адресов, не отображаемой в кэш-память (например, для сопроцессора фирмы Weitec и устройств ввода/вывода).

На многих материнских платах можно выбирать между одноуровневой или многоуровневой системами организации памяти. По умолчанию устанавливается ражим многоуровневой памяти. Если Вы установите режим одноуровневой памяти, то кэш-память SRAM просто добавляется к адресному пространству основной оперативной памяти. Одноуровневую память лучше использовать, когда внутренний кэш процессора по объему превосходит емкость кэш-памяти на материнской плате.

...Уже до появления микропроцессора i80486 фирмы Intel стало ясно, что скорость обмена данных процессор-память по системной шине происходит очень медленно даже при использовании внешней кэш-памяти. Поэтому уже в микропроцессоре i80486 фирма Intel стала использовать кэш-память, находящейся в самом процессоре. В процессоре i80486 осуществляется кэширование системных регистров —путем введения “теневых" регистров. Когда программа загружает селектор в системный регистр, процессор автоматически считывает (“кэширует”) нужный системный регистр в теневом регистре. После этого обращения к памяти достаточно сложить эффективный адрес с базовым адресом сегмента в теневом реестре, и получить линейный адрес. Это так называемый кэш первого уровня. В микропроцессоре Pentium кэшированию стали подвергать не только системные регистры, но и регистры данных и предвыборки команд.

Логическим продолжением явилось размещение кэш-памяти и ее контроллера не на материнской плате, а на самом процессоре. При этом решаются две задачи:

15.   Упрощение шины передачи данных.

16.   Появилась возможность работы кэш-памяти не на частоте шины, а на частоте процессора. При этом скорость работы кэш-памяти увеличивается.

Исходя из всего этого, в микропроцессоре Pentium стала использоватьс встроенная в него кэш-память второго уровня. Благодаря ней скорость работы процессора на тех же системных платах возросла. Необходимо, однако, отметить, что изготовление кэш-памяти второго уровня на кристалле процессора намного усложняет стоимость самого микропроцессора. Именно для недорогих моделей компьютеров фирма Intel стала изготовлять процессоры без кэша второго уровня или с кэш-памятью меньшего размера. Примером такого процессора являетс процессор Intel Celeron. Он аналогичен процессору Intel Pentium II, однако либо не содержит кэш второго уровня (в первых моделях), либо он небольшой (в новых версиях этого процессора.) Благодаря этому упала его цена и производительность.

Примечание: в связи с выходом микропроцессора Intel Pentium 4 корпорация Intel снимает с производства в 2001 году микропроцессора Intel Celeron.

5. Постоянное запоминающее устройство.

Кроме оперативной памяти, под термином "память" мы будем подразумевать постоянную и CMOS - память.

К постоянной памяти относят постоянное запоминающее устройство, ПЗУ (в англоязычной литературе - Read Only Memory, ROM, что дословно перводится как "память только для чтения"), перепрограммируемое ПЗУ, ППЗУ (в англоязычной литературе – Programmable Read Only Memory, PROM), и флэш-память (flash memory). Название ПЗУ говорит само за себя. Информация в ПЗУ записывается на заводе-изготовителе микросхем памяти, и в дальнейшем изменить ее значение нельзя. В ПЗУ хранится критически важная для компьютера информация, которая не зависит от выбора операционной системы. Программируемое ПЗУ отличается от обычного тем, что информация на этой микросхеме может стираться специальными методами (например, лучами ультрафиолета), после чего пользователь может повторно записать на нее информацию. Эту информацию будетневозможно удалить до следующей операции стирания информации.

6. Флэш-память.

Особо следует рассказать о флэш-памяти. Flash по-английски – это "вспышка, проблеск". Флэш-память является энергонезависимой памятью, (как и ПЗУ и ППЗУ). При выключении компьютера ее содержимое сохраняется. Однако содержимое flash-памяти можнр многократно перезаписывать, не вынимая ее из компьютера (в отличие от ППЗУ). Запись происходит медленнее, чем считывание, и осуществляется импульсами повышенного напряжения. Вследcтвие этого, а также из-за ее стоимости, флэш память не заменит микросхемы ОЗУ.

7. CMOS-память.

CMOS-память – энергозависимая, перезаписываемая память, которая при своей работе , однако, почти не потребляет энергии. CMOS переводится как complementary metal oxode semiconductor – "комплиментарный металл - оксид - полупроводниковый". Достоинства этой памяти – низкое потребление энергии, высокое быстродействие. В CMOS - памяти компьютера находятся важные для его работы настройки, которые пользователь может менять для оптимизации работы компьютера. Питается эта память от небольшого аккумулятора, встроенного в материнскую плату.

8. Недостатки перезаписываемой памяти.

Основной недостаток ПЗУ – невозможность обновить информацию в этом виде памяти, – одновременно является и его преимуществом: данные невозможно потерять случайно и умышленно. Особенно это стало актуальным на рубехе XX – XXI веков, с вытеснением микросхем ПЗУ на CMOS и flash-память. Рассмотрим возникающие проблемы.

8.1. Потеря данных в CMOS.

Компьютеры с ISA шиной (содержащие процессоры вплоть до i80286), имели минимум настроек. Часто они вполне нормально работали в своей основной конфигурации.

Ситуация изменилась после появления на компьютерах памяти более чем 16 Мбайт, ШВУ контроллеров и PCI-шины. Как выяснилось, в большинстве случаев стандартная настройка материнской платы стала неприменимой. Для сохранения настроек пользователя их стали хранить в CMOS-памяти.

Иногда содержимое CMOS-памяти разрушается. Это возможно в следующих случаях:

17.   Воздействие вируса. При своей работе вирус может специально внедряться в CMOS-память, чтобы обеспечиватиь лучшие условия для его распространения либо специально вывести компьютер из строя.

18.   Неисправность аккумулятора. В некоторых случаях аккумулятор CMOS-памяти может разряжаться (от времени или короткого замыкания на плате.) В этом случаесодержимое CMOS может разрушиться не сразу, а по прошествии двух - трех суток.

19.   Скачок напряжения при работе с CMOS. В этом случае последствия непредсказуемы.

20.   Установка пароля на загрузку. Иногда пользователь для защиты от несанкционированного доступа устанавливает "пароль на загрузку". Если он потом забудет пароль, то для запуска компьютера будет необходим сброс параметров CMOS-памяти путем короткого замыкания ее аккумулятора.

Для восстановления параметров CMOS-памяти после ее сброса существуют опции "стандартной" и безопасной" настройки этой памяти на материнской плате. Пользователю в этом случае придется восстанавливать не все, а только часть параметров. Опции "стандартной" и "безопасной" настройки хранятся в ПЗУ и изменить их невозможно!

8.2. Потеря данных в flash-памяти.

Потеря данных в flash-памяти возможна по тем же причинам, что и в CMOS-памяти. Однако для флэш-памяти нет возможности вернуться к первоначальным установкам! В связи с этим потеря информации в флэш-памяти может быть непоправимой.

... В 1998 году автор узнал о новом черезвычайно опасном вирусе –"Чернобыль". Опасность заключалась в его действии – ровно в годовщину аварии на Чернобыльской АЭС этот вирус портил содержимое флэш-памяти и наиболее важной ее части – BIOS. В результате компьютер не мог вообще осуществлять операции ввода-вывода, в том числе и загрузку операционных систем. CMOS-память же оставалась в полном порядке! Поскольку микросхема с BIOS обычно была припаяна к материнской плате, приходилось выкидывать всю материнскую плату.

Автору известен только один способ 100% гарантии избежать действия этого вируса – аппаратно запретить перзапись флэш-памяти. Дело в том, что новые версии этого вируса размножаются лавинообразно, и нет гарантии, что он сработает именно в эту дату.


Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.