скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: История развития устройств ввода ЭВМ

Мышь.

Прообраз современной мыши появился только в начале 60-х и был изобретен в ходе работ по повышению продуктивности человеческого интеллекта. Вел эти работы ученый Дуглас Энгельбрат, когда он был ученым в Стэндфордском Исследовательском Институте в Менло Парк (Menlo Park), штат Калифорния (Калифорния, штат на западе США, 411 тыс. км2, население 31,2 млн. человек (1993), административный центр — Сакраменто). К тому времени он уже около двенадцати лет работал над этой проблемой. По его мнению, все быстрее возрастающая сложность задач уже превышала возможности человеческого мозга, и необходимо было разработать систему, позволяющую преодолеть этот барьер. Необходимо было придумать устройство, которое позволило бы оператору быстро подвести курсор на информационном дисплее к определенной точке на экране и произвести некоторые действия.

С подачи Энгельбрата была сделана первая модель мыши. Это была простая деревянная коробка с двумя колесиками в днище и большой красной кнопкой сверху. Первоначально шнур располагался спереди, но его быстро перенесли назад, чтобы он не путался и не попадал под мышь. А сам Дуг Энгельбрат назвал свою первую мышь "X-Y Position Indicator for a Display System" ("Индикатор X-Y положения для дисплейной системы"). Принцип ее работы был немного другим, чем у современных мышей: мышь невозможно было передвигать наискосок, а если оператору надоедало все время переставлять мышь, он рывком двигал ее и приподнимал над поверхностью, диск все еще продолжал вращаться и курсор двигался по экрану. Само название "мышь", кстати, появилось спонтанно (как утверждает сам Энгельбрат, из-за провода, похожего на хвост мыши) и сразу же вошло в употребление.

В 1966 году команда Энгельбрата связалась с NASA договорилась о проведении тестирования всех существующих на тот момент устройств целеуказания для того, чтобы дать четкий ответ, какое из них является наиболее точным и удобным. NASA согласилось с необходимостью проведения таких тестов и стала их финансировать. Был разработан ряд тестовых заданий наподобие следующего: компьютер генерировал на экране случайным образом точку и располагал курсор где-то в другом месте. Операторы-тестеры должны были совместить курсор с этой точкой. Замерялось время, необходимое на выполнение этих операций.

В тестировании участвовали первые световые перья, джойстики и другие подобные устройства. Но мышь обошла всех. К примеру, при использовании светового пера у оператора уходило слишком много времени на то, чтобы взять его в руку, поднести к экрану, опять положить на место. Джойстики же не давали необходимой точности целеуказания.

В результате вперед вышла мышь. Правда, ее чуть-чуть опередило другое устройство команды Энгельбрата, которое управлялось коленом оператора. Но так как оно не было таким элегантным и простым, как мышь, то и не получило особого распространения. В 1979 году компания Xerox ознакомила Стива Джобса со своими разработками, которые он и подхватил, разработав Apple Lisa и Apple Macintosh. Кстати, Стэнфордский Исследовательский Институт (место, где работала команда Дуга Энгельбрата) продал лицензию на мышь именно компании Apple. К сожалению, продавшие разработку люди не до конца понимали всю революционность и коммерческую ценность мыши, и сделка обошлась Apple всего лишь в 40 тысяч долларов. В 1983 на рынке появился Apple Lisa - первый компьютер с настоящим оконным пользовательским интерфейсом, а его мышь стала первой мышью, которая получила действительное распространение за пределами исследовательских лабораторий.

Со времени своего изобретения и до настоящих дней мышь претерпела множество изменений. Во-первых, еще в те времена два диска на днище были заменены шариком, который крутил два валика, связанных с дисками, на которых были нанесены токопроводящие участки. Этих участков касались щетки. Когда токопроводящие участки замыкались - курсор двигался, а иначе стоял на месте. Естественно, такая конструкция вызывала большие проблемы. Она была ненадежной - токо-проводящие участки засорялись, а щетки стирались. Поэтому следующим большим шагом стало изобретение т.н. оптомеханической мыши. В оптомеханической мыши диски имеют прорези подобно шестеренкам с зубцами, с одной стороны диска стоит светодиод, а с другой - фотоприемник. Когда свет проходит через прорезь - контакт есть, а когда между светодиодом и фотоприемником находится зубец, то контакта нет. Конструкция весьма проста и надежна. Еще более точный тип - оптическая мышь. У нее вообще нет шарика, а информация собирается специальным световым детектором. Она точнее всех своих предшественниц.

С распространением компьютерной техники все чаще стало проявляться несовершенство человеческого организма, человек все чаще стал страдать от того, что все устройства, с которыми он работал, не были сконструированы согласно эргономическим принципам. В результате появились специально сконструированные мыши, имеющие форму, позволяющую руке человека лежать на ней в физиологически естественном положении, не подвергаясь никакой опасности.

Помимо традиционных мышек,  подключенных к  компьютеру  тоненьким кабелем через  последовательный  порт или через специальный контроллер на плате  расширения,  некоторыми  фирмами  выпускаются  перспективные беспроводные мышки.  Ряд фирм выпускает мышки, передающих информацию с помощью инфракрасных лучей. Есть даже миниатюрные беспроводные  мышки, которые надеваются на палец,  словно перстень. А швейцарская фирма Logitech, признанный мировой лидер в этой области,  выпустила мышку,  связанную с компьютером по радио.  Впрочем, это довольно дорогие устройства, нужны далеко не каждому пользователю.

Радиомышь с гироскопом (хотя мышью данное устройство можно назвать только по предназначению) - весьма элегантное устройство, позволяющее перемещать курсор изменением угла наклона руки.

Трэкбол.

Трэкбол мало чем отличается от мышки.  В сущности - это та же самая мышка,  но перевернутая " вверх ногами  ",  точнее  -  перевернутая вверх шаром. Если мышку надо возить по столу и, катая шарик, управлять перемещением маркера на экране,  то в  трэкболе  надо  просто  крутить пальцами или ладонью сам шарик в разные стороны.

В портативных компьютерах трэкбол нередко встраивается прямо  рядом с  клавиатурой  либо  пристегивается с боку или спереди клавиатуры компьютера. Впрочем,  и для настольных компьютеров выпускаются клавиатуры с  "  встроенным  трэкболом ".  А в самых портативных компьютерах вместо мышки и трэкбола теперь используют крошечный пойнтер – небольшой цветной штырек,  торчащий среди клавиш на клавиатуре,  который, словно джойстик, можно нажимать в разные стороны.

В портативных компьютерах в место пойнтера используется клавиша с буквой J.  Это клавиша  -  или J-пойнтер - как раз и служит таким джойстиком,  воспринимающим нажатия в разные стороны,  а окружающие клавишу J другие буквенные клавиши выполняют роль кнопок отсутствующей мышки или трэкбола.

Мышки вообще как правило более удобны,  чем трэкболы, но трэкболы

требуют меньше свободного места на рабочем столе.

Сенсорные экраны

Сенсорные экраны (touch screens) предназначены для тех, кто не может пользоваться обычной клавиатурой. Пользователь может ввести символ или команду прикосновением пальца к определенной области экрана. Сенсорные экраны используются в основном на сладах продукции, в ресторанах, супермаркетах. В магазинах продающих компакт-диски, можно прослушать желаемую композицию, прикоснувшись пальцем к ее названию на экране компьютера. Слушая выбранную мелодию, вы можете одним прикосновением вызвать список других композиций исполнителя.

Устройства автоматизированного ввода информации 

Устройства этого типа считывают информацию с носителя, где она уже имеется. Примерами таких систем могут служить кассовые терминалы, сканеры штрих-кодов и другие системы оптического распознавания символов. Одно из преимуществ устройств автоматизированного ввода данных состоит в том, что при их использовании исключаются некоторые ошибки, неизбежные при вводе информации с клавиатуры. Сканер штрих-кодов делает менее чем одну ошибку на 10000 операций, в то время как обученный наборщик ошибается один раз при вводе каждых 1000 строк.
Основные вида устройств автоматизированного ввода информации – системы распознавания магнитных знаков, системы оптического распознавания символов, системы ввода информации на базе светового пера, сканеры, системы распознавания речи, сенсорные датчики и устройства видеозахвата.

Системы распознавания магнитных знаков (Magnetic Inc Character Recognition, MICR) используются в основном в банковской сфере. В нижней части обычного банковского чека находится код, нанесенный специальными магнитными чернилами. В коде содержится номер банка, номер расчетного счета и номер чека. Система считывает информацию, преобразовывает ее в цифровую форму и передает в банк для обработки.

Сенсорные датчики (sensors) – это устройства для ввода в компьютер пространственной информации. Например, корпорация General Motors использует сенсоры в своих легковых автомобилях для передачи в бортовой компьютер машины данных об окружающем пространстве и маршруте. Сенсорные датчики также нашли применение в системах виртуальной реальности, игровых приставках и симуляторах.

Устройства видеозахвата (video capture devices) представляют собой небольшие цифровые видеокамеры, соединенные с компьютером. Устройства видеозахвата применяются в основном в системах видеоконференций, которые получают все большее распространение. Благодаря развитию локальных сетей и Интернет, появилась возможность организовывать видеоконференцсвязь, находясь в любой точке планеты.


Графические планшеты (дигитайзеры)

Дигитайзер, или планшет, как его еще называют, состоит из двух основных элементов: основания и курсора, перемещаемого по его поверхности. Это устройство изначально предназначалось для оцифровки изображений. При нажатии на кнопку курсора его местоположение на поверхности планшета фиксируется, а координаты передаются в компьютер.

Дигитайзер можно использовать как аналог манипулятора “мышь”. Часто с дигитайзером связывают управлением командами в AutoCAD'е и аналогичных системах при помощи накладных меню. Команды меню расположены в разных местах на поверхности дигитайзера. При выборе курсором одной из них специальный программный драйвер интерпретирует координаты указанного места, посылая соответствующую команду на выполнение.

Важную роль играет применение планшета в создании на компьютере рисунков и набросков. Художник рисует на экране, но его рука водит пером по планшету. Дигитайзер можно использовать просто как аналог мыши. Особый случай - это чувствительные к нажиму дигитайзеры.

Принцип действия дигитайзера основан на фиксации местоположения курсора с помощью встроенной в планшет сетки, состоящей из проволочных или печатных проводников с довольно большим расстоянием между ними (от 3 до 6 мм). Но механизм регистрации положения курсора позволяет получить шаг считывания информации намного меньше шага сетки (до 100 линий на мм). Шаг считывания информации называется разрешением дигитайзера.

По технологии изготовления дигитайзеры делятся на два типа: электростатические (ЭС) и электромагнитные (ЭМ). В первом случае регистрируется локальное изменение электрического потенциала сетки под курсором. Во втором - курсор излучает электромагнитные волны, а сетка служит приемником. Фирма Wacom создала технологию на основе электромагнитного резонанса, когда сетка излучает, а курсор отражает сигнал. Но в обоих случаях приемником является сетка. Следует отметить, что при работе ЭМ-планшетов возможны помехи со стороны излучающих устройств, в частности мониторов.

При использовании электромагнитного резонанса излучающим (активным) устройством является сам дигитайзер. Перо отражает волны, а дигитайзер анализирует это отражение, для того чтобы установить координаты пера в данный момент. Поэтому перо или курсор не имеют ни батарей, ни шнура, подающего напряжение на микросхемы внутри курсора, их там просто нет. При использовании же активного курсора именно он излучает волны, сообщая таким образом дигитайзеру о своем местоположении. В этом случае либо батареи, либо провод являются его неотъемлемым атрибутом. Но, независимо от системы, в обоих случаях информация о положении курсора относительно сетки, встроенной в поверхность дигитайзера, преобразуется в компьютере так, что мы получаем данные о точном положении курсора.

Характеристики дигитайзеров:

Независимо от принципа регистрации существует погрешность в определении координат курсора, называемая точностью дигитайзера. Эта величина зависит от типа дигитайзера и от конструкции его компонент. На нее влияет неидеальность регистрирующей сетки планшета, способность воспроизводить координаты неподвижного курсора (повторяемость), устойчивость к разным температурным условиям (стабильность), качество курсора, помехозащищенность и прочие факторы. Точность существующих планшетов колеблется в пределах от 0.005 до 0.03 дюйма. В среднем точность электромагнитных дигитайзеров выше, чем у электростатических.

 Важными параметрами дигитайзера являются размер рабочей области и скорость обмена.

Размер рабочей области (Surface Sizes) устанавливает размеры чувствительной части поверхности дигитайзера. Огромное значение играет размер планшета. Планшеты выпускаются от размера А6 (формат открытки) до размера А3 (420 Х 291 мм) и более. Планшеты малого размера обычно используются для не сложных работ: обучение детей рисованию, оформление простых рисунков, введение в электронные документы подписи и т.д. Планшеты большого формата используются для полупрофессиональных и профессиональных работ там, где требуется высокая точность и удобство в работе.

Скорость обмена (Output Rate) указывает на реальную скорость передачи координат дигитайзером.

Конструктивно дигитайзеры бывают жесткие и гибкие. Гибкий графический планшет обладает такими же возможностями, что и обычный жесткий дигитайзер, но он дешевле и намного легче, и его рабочее поле выполнено из гибкого материала, похожего на прямоугольный кусок линолеума. Его можно свернуть в трубочку, что очень удобно в случае переноса и хранения. Гибкие дигитайзеры появились на нашем рынке весной 1994 года. Низкая цена, небольшой вес (7 кг в упаковке), компактность при транспортировке выгодно отличают их от традиционных жестких. От того, для каких работ вы выбираете дигитайзер, зависит его формат. Размер рабочего поля обычно от 6 х 8 дюймов до 44 х 62 дюйма. Изготовители гибких планшетов по новой технологии утверждают, что могут "вырезать" их любого формата. Часто пользователи называют формат по аналогии с бумажными листами, но размер 305 x 305мм трудно соотнести с каким-то стандартным форматом.

Указующее устройство.

Указующим устройством является курсор, ещё существует перо (или стило). Перья в виде ручки производятся с одной, двумя и тремя кнопками. Кроме того, есть простые перья и перья, чувствительные к нажиму. Последние особенно интересны для художников и аниматоров.

Курсоры бывают четырех-, восьми-, двенадцати- и шестнадцатикнопочными. Желая выделиться, некоторые фирмы стараются стать исключением из правила. Так, Oce Graphics добавляет на большом курсоре семнадцатую, "самую главную" кнопку. Форма курсора, легкость нажатия и расположение кнопок - вот в чем отличия. Во всем мире одними из лучших признаны четырехкнопочные курсоры фирмы CalComp. Их чаще прочих фотографируют и помещают в журналах. На них вторая и третья кнопки расположены рядом, а первая и четвертая L-образной формы обрамляют средние. Традиционным же считается ромбовидное расположение кнопок, которому продолжают следовать другие известные производители. Однако для двенадцати- и шестнадцатикнопочных курсоров канон один - "табличное" расположение кнопок, как на телефонном аппарате.

Перья.

Как уже говорилось, перья производятся с одной, двумя и тремя кнопками. Кроме того, есть среди них чувствительные к нажиму, особенно привлекательные для компьютерных художников и аниматоров. Такое перо может воспринимать до 256 градаций усилия нажима. Степени нажима ставят в соответствие или толщину линии, или цвет в палитре, или его оттенок. В результате можно имитировать на компьютере процесс рисования масляными красками, темперой или акварелью на специально подобранной "фактуре". Для реализации этих возможностей необходимо иметь специальное программное обеспечение. Среди подобных программ для персональных компьютеров можно упомянуть Adobe PhotoShop, Aldus PhotoStyler, Fauve Matisse, Fractal Design Painter, Autodesk Animator Pro, CorelDraw.

Удобство пера - характеристика сугубо субъективная, как и при выборе авторучки. Некоторым нравятся легкие перья фирмы Wacom, в то время как другие предпочитают более тяжелые, но хорошо сбалансированные перья от Kurta. И курсоры, и перья бывают как с проводом, так и без него. Беспроводной указатель удобнее, но он должен иметь батарейку, что утяжелит его и потребует дополнительного обслуживания.

Исключение составляют пассивные неизлучающие перья Wacom, которые, впрочем, воспринимают вдвое меньше градаций нажима. Не так давно на рынке дигитайзеров появились предложения с модифицируемыми курсорами, которые могут работать и с проводом, и с батарейкой.

В настоящее время в связи с появлением программ распознавания рукописных текстов и символов, у дигитайзеров появилось новое применение, это ввод рукописных записей и ввод электронной подписи в факсы, и документы, а также для защиты конфиденциальных документов и файлов от редактирования и прочтения. Введенные образы букв преобразуются в буквы при помощи специальной программы распознавания, а размер площадки для ввода, у таких дигидайзеров меньше. Устройства перьевого ввода информации чаще используются в сверхминиатюрных компьютерах PDA (Personal Digital Assistant) или HPC (Handheld PC), в которых нет полноценной клавиатуры.

Графический планшет Genius Wizardpen 4x3 USBГрафический планшет Genius Wizardpen 4x3 USB

WizardPen 4x3 представляет собой обыкновенную ручку, которой легко чертить, рисовать, делать эскизы, подписывать документы или делать заметки от руки в Internet, либо в любой прикладной программе. Забудьте обо всех неприятностях со шнуром, собравшейся пыли или трудностях при черчении - чувствительное к давлению перо позволит получать любые формы и любую толщину линии. Световое перо. Перо без провода с 512 уровнями чувствительности к нажиму предоставляет неограниченную свободу движений. Кроме того, WizardPen 4x3 обеспечивает разрешение 4064 линии/дюйм, имеет настраиваемую кнопку для быстрого просмотра вверх и вниз, вправо и влево в Internet и в документах Windows, а также программное обеспечение для комментариев от руки.


Тачпад.

        Тачпад (TouchPad) представляет собой чувствительную контактную площадку, движение пальца по которой вызывает перемещение курсора. В подавляющем большинстве современных ноутбуков применяется именно это указательное устройство, имеющее не самое высокое разрешение, но обладающее самой высокой надежностью из-за отсутствия движущихся частей.

TouchPad поддерживает индустриальный стандарт "mouse" плюс собственные, специфические, расширенные протоколы. Поддержка "mouse" означает, что, подключив к компьютеру TouchPad, вы сразу можете использовать ее как обычную "мышку", без инсталляции ее собственного драйвера.

Дальнейшим развитием TouchPad является TouchWriter - панель TouchPad с повышенной чувствительностью, одинаково хорошо работающая как с пальцем, так и со специальной ручкой и даже с ногтем. Эта панель позволяет вводить данные привычным для  человека образом - записывая их ручкой. Кроме того, ее можно использовать для создания графических изображений или для подписывания ваших документов. Для желающих писать китайскими иероглифами, можно порекомендовать установить на компьютер пакет QuickStroke, который позволит вводить иероглифы, непосредственно рисуя их на панели. Причем программа, по мере ввода, предлагает готовые варианты иероглифов.

Оба эти устройства предполагают наличие определенной тренировки для обращения с ними, однако по надежности и малогабаритности остаются вне конкуренции.

Сенсорный экран

Сенсорный экран представляет собой стеклянную конструкцию, размещаемую на поверхности дисплея, отображающего систему навигации. Выбор необходимой функции системы происходит при прикосновении к соответствующему изображению на экране. Контроллер сенсорного экрана обрабатывает координаты точки прикосновения и передает их в компьютер. Специальное программное обеспечение запускает выбранную функцию.

Основные виды:

Пятиэлектродные резистивные сенсорные экраны.

Их технология разрабатывалась для использования в условиях агрессивной окружающей среды, поэтому эти сенсорные экраны превосходят другие экраны в надежности и долговечности. Резистивные экраны обладают максимальной стойкостью к загрязнению. Эта особенность позволяет им не бояться попадания на рабочую поверхность жидкостей, конденсата, паров, и надежно работать, когда сенсорные экраны других типов выходят из строя. Экран выдерживает 35 миллионов прикосновений к одной точке.

Устройство резистивного сенсорного экрана

Сенсорный экран AccuTouchВыполненный в соответствии с геометрией монитора, сенсорный экран AccuTouch состоит из стеклянной панели, покрытой слоем пластика. Пространство между стеклом и пластиком отделено микро-изоляторами, которые равномерно распределены по активной области экрана и надежно изолируют проводящие поверхности. При легком прикосновении поверхности соприкасаются. Контроллер регистрирует изменение сопротивления, преобразует его в координаты прикосновения (X и Y) и передает их на системную шину компьютера.

Как контроллер определяет координаты касания

Когда контроллер ожидает нажатия, резистивное покрытие сенсорного экрана находится под напряжением +5В, а подложка заземлена, за счет микроизоляторов между этими поверхностями сохраняется высокое сопротивление. Когда ничто не касается сенсорного экрана, напряжение на подложке равно нулю. Уровень напряжения подложки постоянно преобразовывется аналогово-цифровым преобразователем (ADC) и отслеживается микропроцессором контроллера.

Когда к экрану прикоснулись, микропроцессор улавливает изменение напряжения подложки и начинает вычислять координаты касания следующим образом:

A. Микропроцессор определяет напряжение по оси Х путем подачи напряжения +5В на контакты H и X и заземляет контакт Y и L. Значение напряжения, пропорциональное Х координате касания появляется на подложке и фиксируется на контакте S разъема сенсорного экрана. Это напряжение оцифровывается через ADC согласно алгоритму усреднения и потом временно сохраняется для передачи на порт (хост).

B. После этого контроллер проделывает ту же самую операцию для оси Y. Соответственно, путем подачи напряжения на контакты H и Y и заземления контактов X и L, полученное на контакте S напряжение также оцифровывается, выравнивается и сохраняется для последующей передачи в порт.

Почему алгоритм выравнивания так важен

Алгоритм выравнивания компенсирует колебания, возникающие во время создания и разрыва контакта с сенсорным экраном, осуществляет проверку значений осей X и Y в пределах допустимых. Если одно или несколько значений выходит за пределы допустимых, значение обнуляется и процесс повторяется. Это продолжатся до тех пор, пока несколько значений X (потом Y) не попадут в допустимый диапазон. Среднее значение используется как X (Y) координата соответственно.

Как только независимые значения X и Y попадут в допустимый диапазон, пары координат используются как шаблон для выравнивания и компенсирования помех. Если шаблон не попадает во внутреннюю область, все координаты обнуляются и измерения начинаются сначала. При получении приемлемых значений среднее значение передается в компьютер.

Сенсорные экраны на основе поверхностных акустических волн (ПАВ)

Экран на основе ПАВ

На стеклянной панели сенсорного экрана, соответствующей форме матрицы монитора, по углам в нерабочей части расположены пьезопреобразователи (ПЕЗОЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ, преобразователи механических и акустических колебаний в электрические и обратно, основанные на пьезоэлектрическом эффекте. Используются в качестве мощных источников ультразвука, излучателей и приемников звука, микрофонов и гидрофонов, звуковых резонаторов, фильтров, датчиков механических напряжений. Применяются в акустоэлектронике и сейсмических исследованиях). Контроллер посылает электрический сигнал на преобразователи, которые превращают сигнал в акустическую волну. Акустическая волна проходит по поверхности стеклянной панели и отражается массивом датчиков по периметру. Приемные датчики собирают отраженную волну и направляют ее обратно на пьезоэлементы. Волна преобразуется в электрический сигнал, который анализируется контроллером.

Схема работы экрана на основе ПАВ

При прикосновении к экрану часть поверхностной волны поглощается. Полученный сигнал сравнивается с эталоном, определяются изменения, вычисляются координаты. Этот процесс осуществляется независимо по двум осям - X и Y. Особенностью является возможность определять силу прикосновения - координату Z. Координаты передаются в компьютер.

Сенсорные экраны на инфракрасном излучении.

  • Настраивается на изменение условий освещения, включая прямой солнечный свет
  • Стабильность начальной калибровки
  • Высокая устойчивость к механическим повреждениям
  • Функция коррекции параллакса для LCD дисплеев
  • Герметически защищен от загрязнений
  • Выбор между прозрачным и антибликовым экраном

Как работает

Сенсорные экраны CarrollTouchТехнология основывается на прерывании сетки из невидимых инфракрасных лучей на повехности сенсорного экрана. Рама оптической матрицы содержит ряд инфракрасных светодиодов и фото-транзисторов, установленных на противополжных сторонах и создающих сетку из инфракрасных лучей.

Вся конструкция в сборе состоит из печатной платы с установленными на ней опто-парами и скрыта за прозрачной для инфракрасных лучей панелью. Контроллер сенсорного экрана последовательно включает светодиоды для создания сетки инфракрасных лучей. Когда перо или палец касается экрана, он попадает в сетку и прерывает лучи. Один или более фото-транзисторов обнаруживают отсутствие света и передают в контроллер сигнал, по которому в дальнейшем устанавливаются координаты точки, в которой произошло касание.

Список источников:

1.   В.А. Извозчиков "Информатика в понятиях и терминах" М.: Просвещение, 1991 г.

2.   А.М.Ларионов “Периферийные устройства в вычислительных системах” М.: Высшая школа,1991г.

3.   http://friends.pomorsu.ru/Alest/CompHistory/index.htm

4.  


Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.