скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Бессилие от знания или может ли история помочь физикам?

К его величайшему удивлению, стрелка при разряде многократно изменяла направление своего отклонения. Истолковано это было так, что электрическая жидкость при коротком замыкании лейденской банки не только вытекает из нее, но и втекает обратно.

Сначала эта публикация вызвала бурю негодования у всех действующих тогда физиков. Однако после того как оказалось, что описанный результат устойчив при повторении эксперимента, ученые нашли ему объяснение. Многократное изменение направления тока через конденсатор при коротком замыкании было воспринято как следствие интерференционных процессов, возникающих в "электрической жидкости", заполняющей лейденскую банку, в результате ее встряхивания, которому эквивалентно короткое замыкание. В таком виде это явление и существовало в учебниках и научных публикациях еще лет 30.

Второе открытие колебательного контура было сделано спустя 30 лет после этого лордом Кельвином. Он заинтересовался формой сигнала, возникающего при разряде конденсатора и, чтобы удовлетворить свое любопытство, изобрел осциллограф. Увидев же, что электрический ток, протекающий через лейденскую банку, имеет форму синусоиды, Кельвин сообразил, что имеет дело с неизвестной ранее колебательной системой.

И только еще через почти 10 лет электрический LC контур был открыт окончательно, когда Фергюсон осознал роль индуктивности2.

Проводя параллель с историей открытия электрического контура, можно сказать, что, найдя зависимость (1), я выполнил только первую часть - обнаружил наличие акустической колебательной системы в виде плоскопараллельной структуры (как частный случай). Однако при этом остался непонятен механизм преобразования импульса в гармонический сигнал, а также был неясен физический смысл числителя выражения (1).

Достаточно долгое время, уже используя на практике выражение (1) и аппаратуру "Резонанс", я, тем не менее, мог без труда доказать, что обнаруженный эффект существовать не может. В самом деле, при условии, что материал пластины однороден по вещественному составу и по акустическим свойствам, можно представить себе лишь один механизм - это прямолинейное распространение упругих колебаний внутри пластины и отражение их от границ. Результат многократного переотражения от поверхностей пластин короткого импульса - это отнюдь не гармонический процесс. В отличие от гармонического, такой процесс имеет очень широкий частотный спектр, и перепутать их невозможно.

Но однажды истину, изложенную в предыдущем абзаце, я воспринял иначе. Реакция на импульсное воздействие имеет вид гармонического сигнала, и это достоверно и однозначно доказывается средствами электроизмерений. Однородность вещественного состава материала пластины, по-видимому, тоже нет оснований подвергать сомнению. Следовательно, раз уж преобразование удара в гармонический процесс все-таки происходит, то должна же быть какая-то неоднородность... А что там у нас с однородностью акустических свойств материала пластины? А может ли оказаться скорость распространения упругих волн неодинаковой в различных точках объекта из однородного по вещественному составу материала?

На чувственном, интуитивном уровне этот вопрос воспринимается с трудом. В самом деле, уверенность в постоянстве скорости звука в однородных по вещественному составу средах, я думаю, рождается вместе с нами. Так же точно, как и некоторые другие аксиомы. Такие, как, скажем, утверждение о том, что параллельные линии не пересекаются в пространстве. Но, с другой стороны, нет такой аксиомы, которая не требовала бы проверки. Ведь, как сказал Лобачевский, аксиома - это не то, что не требует доказательства, а то, что никак не доказать (или не опровергнуть). Чем это кончилось, я имею в виду утверждение о непересекающихся параллельных, известно. Всего лишь, созданием нового типа геометрии.

Здесь я хотел бы немного отвлечься, чтобы показать, что все, что произошло дальше, ничуть от меня не зависело. В самом деле, казалось бы, если уж я получил инструмент для прогнозирования устойчивости кровли в угольных шахтах, то так ли обязательно было доискиваться до механизма того эффекта, на котором этот инструмент работает?.. Я ведь сам только что говорил, что физический эффект совсем не обязательно нужно понимать, чтобы его использовать... Но смотрите сами, ведь аппаратура "Резонанс" была предназначена для сохранения человеческих жизней в условиях шахт. Возможно ли использование в этих целях прибора, который работает на эффекте, которого в принципе быть не может? А если все те результаты, которые мы получали до этого, были результатом какого-то странного стечения обстоятельств, а в дальнейшем, когда использование прибора узаконится, таких обстоятельств больше не будет (или, что еще хуже, они не всегда будут), то наши рекомендации будут способствовать гибели людей, так ведь?

Когда я это осознал, то принял для себя решение аппаратуру шахтерам не давать до тех пор, пока не разберусь в физике используемых эффектов. Мое решение вызвало такую бурю негодования, от шахтных геологов и до самого Минуглепрома, что об этом нужно рассказывать отдельно. Но здесь важно то, что только тот стресс, в котором я оказался, помог мне пройти весь дальнейший путь поисков механизма эффекта преобразования ударного воздействия в гармонический отклик. Не даром у нас потом родился афоризм, что для того, чтобы в голову пришло что-то приличное, надо, чтобы по ней ударили. Вот гипотеза о непостоянстве скорости звука в однородных средах и возникла как результат удара по голове.

Способ проверки факта постоянства скорости звука в однородных средах оказался на удивление простым. Напомню только, что скорость движения какого-либо объекта V прямому измерению не подлежит. Она вычисляется делением отрезка пути r на время t, в течение которого пройден этот путь. Поэтому определяемая в эксперименте скорость всегда является средней, усредненной по отрезку пути r.

Эксперимент, направленный на проверку постоянства скорости звука в однородных по вещественному составу средах, имел следующую логику. Если это постоянство действительно имеет место, то при сквозном прозвучивании пластин величина определяемой скорости распространения упругих волн V не должна зависеть от толщины пластины h. При всей прозрачности этой логики, все же, первый цикл измерений зависимости V(h) был осуществлен на пластинах из оргстекла. Почему это было сделано. Дело в том, что измерение скорости звука в акустике твердых сред является очень серьезной проблемой. При всей кажущейся очевидности и простоте вопроса, результаты реальных измерений в простейших условиях порою настолько непонятны, что теоретикам показалось проще создать массу запретов, чем разобраться в этих неясностях. Так, если результаты ваших измерений не соответствуют каким-то существующим мысленным моделям, вам просто объяснят, что вы не имели права так измерять. Причем эти запреты настолько нечеткие, что в принципе, можно запретить любые измерения. Однако если мы берем два совершенно идентичных по своей геометрии образца из различных материалов, то если вас устроят результаты измерений на одном из них, то запрет точно таких же измерений на другом уже не будет убедительным.

График зависимости скорости распространения упругих колебаний от толщины прозвучиваемых пластин из оргстекла, показанный на рисунке (график 1), свидетельствует о том, что скорость распространения упругих колебаний в оргстекле действительно одинакова во всех точках этого однородного материала. Утолщение линии этого графика при уменьшении толщины пластины соответствует увеличению относительной погрешности определения скорости с уменьшением величины t. Итак, метрологическая корректность при проведении этих измерений может считаться приемлемой.

При точно таком же исследовании пластин из любого металла или сплава, керамики, стекла или горной породы зависимость V(h), как оказалось, имеет вид, подобный графику 2. Как истолковать такой результат?..

Характер зависимостей скорости распространения фронта при сквозном прозвучивании пластин от их толщины: 1- пластины из оргстекла; 2- пластины из стекла, металлов, керамики. 

В принципе, подобная зависимость имела бы место, если бы мы таким же точно способом определяли скорость движения автомобиля при изменении расстояния между точками его начала движения и остановки. Средняя или крейсерская скорость любого средства передвижения уменьшается при уменьшении длины пути за счет неизбежного присутствия участков, где скорость сначала плавно увеличивается, а затем, перед остановкой плавно уменьшается.

Однако применительно к упругой волне, распространяющейся в однородном материале пластины, подобная модель была непредставима. Честно говоря, этот эксперимент готовился мною исключительно для того, чтобы раз и навсегда исключить даже сами мысли о возможности неодинаковости скорости в различных точках внутри объектов из однородной среды.

Вот уж никогда не думал, чтобы рядовое, в общем-то, измерение могло подействовать на меня столь эмоционально... Настолько подействовало, что когда аппаратура уже была готова для осуществления измерений, то я понял, что я сделать эти исследования не могу, и отложил их на следующий день.

Более того, результаты этого эксперимента сильнейшим и неожиданным образом подействовали на всех окружающих людей, так или иначе причастных к нашим работам. Некоторые ближайшие коллеги, с участием которых проводились первые измерения зависимости V(h), вдруг стали отказываться от своего в них участия, а родная кафедра внезапно повела курс на уничтожение лаборатории вместе с тем курсом, который я читал.

Впрочем, я тогда ничего вокруг не замечал, одержимый постановкой такого высокоточного измерения, которое могло бы закрыть это уж точно ошибочное, никому не нужное открытие. Однако чем изысканнее были исследования, тем яснее вырисовывалась картина. Да, действительно, звуковая волна, проникая в пластину из подавляющего большинства твердых сред, сначала разгонялась, а затем, при приближении ко второй границе плавно замедлялась. И вот тогда мне стало плохо по-настоящему.

Если многочисленные болельщики мучили меня вопросом, почему в оргстекле, в отличие от стекла, этот эффект отсутствует, то меня самого не отпускала другая, совершенно мистическая проблема:

откуда упругая волна знает, что приближается граница,

и что пора начать замедление своего движения?

Вот где было сумасшествие! Этот вопрос горел в моем замутненном сознании с настойчивостью маньяка, не отпуская ни на минуту... Вот уже более 20 лет прошло с тех пор, но этого состояния непрерывной и полной огорошенности забыть нельзя.

Ну, что тут скажешь, невольно начнешь верить в Провидение. Не знаю, чьей волей, но в руках у меня оказалась книга о жизни Ньютона, откуда я узнал, что с ним происходила примерно такая же история. При обсуждении закона всемирного тяготения его оппоненты, да и он сам были одержимы подобным же вопросом: где та "веревка", что заставляет взаимодействовать между собой планеты и прочие объекты? Так же, как и меня, его эта мука не отпускала года два. После чего его осенило, что закон должен отвечать не на вопрос "почему", а исключительно на вопрос "как"! В конце концов, если при метрологически корректном измерении эффект повторяем, значит, его нужно учитывать, с ним нужно считаться независимо от нашего понимания. Разве мало мы используем эффектов, не понимая их физики? Да хоть бы тот же закон всемирного тяготения...

И все, больше никаких мук. Принимаем как данность, что в подавляющем большинстве твердых сред скорость распространения фронта упругих колебаний снижается при приближении фронта к поверхности объекта. То есть в подавляющем большинстве твердых сред существует приповерхностный слой, толщина которого достигает 2 см, в котором скорость распространения фронта упругих колебаний имеет пониженное значение за счет уменьшения ее с приближением фронта к поверхности.

Отношение к этому эффекту как к доказанному факту позволило обнаружить еще некоторые новые эффекты. Кстати, один из них позволил ответить на тот злополучный вопрос, который я обвел рамочкой. Но наиболее интересным мне кажется эффект акустического резонансного поглощения (АРП). Суть его в следующем.

Если при сквозном прозвучивании пластин из любых материалов изменять частоту генератора, возбуждающего электроакустический преобразователь, то можно увидеть на некоторых частотах так называемый эффект монохроматора, известный в оптике еще как эффект просветления. Эффект этот заключается в том, что, в результате интерференционных (а в данном случае, это действительно так) процессов при многократном переотражении сигнала внутри слоя на некоторых частотах сигнал проходит через пластину целиком при абсолютном отсутствии отражения от нее. Условие эффекта монохроматора заключается в том, что на толщине пластины h должно укладываться целое количество полуволн продольных колебаний или, иначе говоря,

 , где (2)

fмх - частоты, на которых наблюдается эффект монохроматора,

n - любое целое число,

Vпр - скорость продольных волн.

На других частотах зондирующий сигнал частично отражается от пластины, и за счет этого уменьшается уровень сигнала, который проходит сквозь пластину. Эффект монохроматора можно наблюдать на пластинах из всех твердых сред. Однако при исследовании пластин не из оргстекла, а из других, перечисленных выше материалов, обнаружился еще один эффект, по смыслу диаметрально противоположный эффекту монохроматора. Как оказалось, на некоторых частотах (fАРП) отсутствует не отражение, а прохождение сигнала через пластину, но при этом не увеличивается отражение от нее. Естественен вопрос: а куда же девается та часть сигнала, которая и не проходит насквозь, но и не идет на увеличение отражения?

И опять год поисков. В результате которых оказалось, что искомая часть сигнала излучается пластиной через ее же собственные торцы. Этот эффект, по аналогии с ферромагнитным, парамагнитным и другими известными в физике эффектами резонансного поглощения, был назван эффектом акустического резонансного поглощения. Переориентация первичного акустического потока в ортогональном направлении есть следствие того, что эффект АРП идет на поперечных волнах.

Условие эффекта АРП следующее:

 , где (3)

m - любое нечетное число,

VСДВ - скорость поперечных (сдвиговых) волн.

Низшая частота, на которой наблюдается эффект АРП (при m =1), оказалась равной частоте f0, которая возникает при ударном возбуждении слоя-резонатора. Отсюда и название эффекта, так как совпадение собственной частоты с возбуждающей - это и есть резонанс. Таким образом, числитель формулы (1) есть не что иное, как скорость поперечных волн VСДВ.

Любой новый физический эффект - это бездна информации. Особенно когда это касается такого фундаментального эффекта как АРП. Ограничиваясь рамками настоящего повествования, можем отметить, что:

Слои из большинства твердых сред являются резонаторами, то есть при ударном воздействии они откликаются гармоническим затухающим процессом на частоте, равной f0.

Собственный колебательный процесс идет на поперечных волнах, и поэтому реализация эффекта АРП может считаться первым метрологически корректным способом определения скорости поперечных волн.

Наличие приповерхностных зон, в которых скорость распространения упругих волн не является постоянной, а уменьшается с приближением к границе, является условием существования резонатора. Мы научились уничтожать эти зоны, и тогда стеклянные, металлические и т.п. пластины перестают быть резонаторами. Мы научились создавать эти зоны, и тогда пластины из оргстекла, жидкостные и газовые слои становятся слоями-резонаторами.

Слой-резонатор - это частный случай. Резонатором является объект любой формы при наличии приповерхностных слоев с непостоянной скоростью звука, но при этом количество собственных частот колебательного процесса, возникающего в этом объектах, равно количеству его размеров. К примеру, параллелепипед имеет три размера и, соответственно, три частоты его собственного звучания.

Определяя с помощью спектрально-акустических измерений спектр собственного звучания, нетрудно определить размеры объекта, а также выявить скрытые границы, в частности, обусловленные дефектами материала. И этот факт породил спектрально-акустическую дефектоскопию.

Границы, выявляемые при спектрально-акустических измерениях, представляют собой поверхности, по которым возможно взаимное проскальзывание соседних сред. Это определяется тем, что формируются собственные колебания на поперечных волнах.

Понятно, что до тех пор, пока не будет создан формально-математический аппарат для описания преобразования импульсного воздействия в гармонический отклик наподобие того, как это было сделано Кельвином для электрического колебательного контура, открытие акустической колебательной системы нельзя считать завершенным. И, вместе с тем, мы не только имеем право объявить о рождении новой, неведомой ранее колебательной системы, но, и обязаны это сделать, так как практическое значение этого факта просто огромно. На базе этого нового знания создана спектральная сейсморазведка, на счету которой уже есть несколько новых месторождений полезных ископаемых. Кроме того, с помощью спектральной сейсморазведки оказалось возможным впервые, за всю историю строительной науки оценивать и прогнозировать надежность инженерных сооружений. Метод спектрально-сейсморазведочного профилирования (ССП) позволяет еще до начала строительства дома показать, где в будущем доме начнут развиваться трещины, и как передвинуть строительную площадку, чтобы этих трещин не было. Я не ставлю своей задачей перечислять все возможности этого метода, а заинтересовавшимся можно заглянуть на сайт http://www.newgeophys.spb.ru/, где, кроме примеров использования метода ССП, опубликована книга по основам спектрально-акустического направления в физике. Сейчас же, когда спектральная сейсморазведка показала свою жизнеспособность, возникла необходимость найти точки соприкосновения нового метода с уже существующими, традиционными сейсмометодами.

При поисках этих точек соприкосновения мне необходимо было очертить реальные возможности также и методов традиционной сейсморазведки. Признаюсь, что задача оказалась очень сложной. Специально для этого общаясь с действующими сейсморазведчиками различных организаций, я искал случаи, когда полученные сейсморазведчиками результаты сравнивались с результатами, полученными при использовании других методов, как геофизических, так и разведочного бурения. Надо сказать, что результаты сейсморазведки всегда подтверждают уже имеющуюся геологическую информацию, но чтобы было наоборот, то есть, чтобы сейсморазведка выполнялась вначале, а затем ее результаты проверялись бы другими методами - такого мне встретить не удалось. И тогда я отправился к первоисточнику сообщений о том, что западносибирская нефть открыта главным образом за счет применения сейсморазведки.

Увы, разочарование было полным. Как показало расследование, разведка на тюменскую нефть велась в следующей последовательности. Вначале делалась геологическая и геофизическая (но не методами сейсморазведки) съемка, затем на выявленных аномалиях осуществлялось разведочное бурение, и только после этого, там, где из скважины шла нефть, делали сейсморазведку. О моей растерянности нетрудно догадаться. На вопрос, в чем же был смысл применения сейсморазведки, мне ответили, что это самый дорогой метод, и его наличие обуславливает финансирование геофизиков. Естественно, что в дальнейшем сейсморазведчики это категорически отрицали. Но я с тех пор во всех подходящих случаях в той или иной форме предлагаю сейсморазведчикам осуществить свои исследования при условии полного отсутствия априорной информации.

Результат такого опроса абсолютно устойчив. Ни один сейсморазведчик, ни в одной стране Мира, никогда не согласится проводить исследования при отсутствии информации о геологическом строении. Правда, как оказалось, и из этого можно сколотить научный капитал. Так, геофизики СПб университета, когда я проводил там семинар, квалифицировали метод спектральной сейсморазведки как антинаучный, поскольку для проведения его не требуется никакой априорной информации. Но это так, из области парадоксов.

Вот круг и замкнулся. Не может работать метод, основанный на несуществующих эффектах. А отказаться от этого метода бывает очень трудно, потому что, с одной стороны, слишком дорого обошелся, а с другой, ну кто же будет отказываться от источника собственного финансирования...

И стало окончательно ясно, что переход от общепринятой, но абсолютно неинформативной сейсморазведки к спектральной связан со сменой парадигмы акустики.

Обычно, при рассмотрении подобных ситуаций считается, что старая парадигма должна войти в новую как составная часть, как частный случай. В качестве примера обычно приводится вхождение ньютоновской, классической механики в теорию относительности. Но необходимо уточнить. В новую парадигму могут войти только те составные части старой парадигмы, которые не являются научным заблуждением. Так что в новую теоретическую акустику (я бы ее назвал комплексной акустикой, поскольку она изучает не только распространение звука, но и преобразование спектра) войдет совсем немного от современной теоретической акустики - лишь законы распространения поля упругих колебаний в газах, жидкостях и твердых средах типа оргстекла.

Для стороннего наблюдателя, лично не заинтересованного ни в одном, ни в другом подходе к описанию поля упругих колебаний, мне кажется, я показал достаточно убедительно если не полную ошибочность традиционного подхода в акустике, то, по крайней мере, необходимость его проверки. Однако это совсем не означает, что в обозримом будущем кто-то из акустиков-теоретиков прислушается к сделанным мною выводам. Для того чтобы объяснить, почему я так думаю, позволю себе еще одно отступление.

Во время моего бурного существования в ЛГИ, Судьба свела меня с замечательным ученым, ныне покойным, Львом Ароновичем Сеной. Он всемирно известен работами в области физики плазмы, и эффект Сены знают и используют еще с 1947-го года. Ознакомившись с результатами некоторых моих исследований, он более всего получил удовольствие от того, что все до единого мои утверждения можно подтвердить экспериментально. Однако дать официально какое-то заключение о моих работах либо выступить на каком-либо форуме он отказался категорически. Мотивировка была очень понятной. "Ведь если я выскажу свое мнение по поводу акустики, - сказал он, - это будет свидетельствовать только о том, что мне пора на покой, и это осложнит мне работу даже в моей собственной области знания." Казалось бы, причастность к физике должна как-то объединять ученых хотя бы до такого уровня, чтобы понимать друг друга. Однако существующий этический закон не позволяет делать никаких суждений по предмету, выходящему за рамки признанной компетенции конкретного ученого совета.

Так что акустикам-теоретикам и геофизикам-сейсморазведчикам можно просто не реагировать на любые доказательства их заблуждений или просто обмана. Новую акустическую парадигму могут принять только акустики, однако поскольку им это не нужно, то в обозримом будущем и не произойдет. Кстати, известный методолог и автор книги "Структура научных революций" Т.С. Кун на основании анализа подобных известных ситуаций доказывает, что смена парадигмы действительно происходит не быстрее, чем время смены поколения.

Правда, ситуация была бы помягче, если бы в геофизике придерживались законов, которые свято выполняются всеми остальными физиками. Я имею в виду неукоснительно выполняющееся во всех областях физики требование метрологической корректности при проведении исследований. В геофизике такого требования не существует, и как результат - существуют геофизические методы, основанные на несуществующих физических эффектах , и сейсморазведка - это всего лишь один пример.

Однако посмотрим на проблему тупиковых направлений в геофизике еще с одной стороны. Ведь если бы преподаванию истории развития физики, в том числе, и истории великих заблуждений, уделялось большее внимание, подобные случаи были бы просто невозможны. Попробуйте студентам, знающим историю хотя бы в объеме данной статьи, доказать, что гармонический сигнал возник в результате интерференции. Думаю, что ничего бы не получилось. Волей-неволей акустикам пришлось бы уже давным-давно начать поиски колебательных акустических систем.

Познание безгранично и бесконечно, и возможности для заблуждений будут всегда, но, показав историю уже известных и преодоленных ошибок, думается, мы эти возможности немного уменьшили бы.

1 Чисто гармонических сигналов в принципе не бывает. Идеальная синусоида - это абстракция, не содержащая никакой информации.

2 Поняв, что имеет дело с колебательной системой, Кельвин еще не знал о роли индуктивности. Уравнение, написанное им, имело вид:

, где С - статическая, а A - динамическая емкости лейденской банки. Поражает гениальность этого человека, который, не зная о роли индуктивности, сумел вывести уравнение контура.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.newgeophys.spb.ru


Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.