скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Автоматизированные измерительные и диагностические комплексы, системы

В системах, которые содержат вычислительные устройства, обработка информации может производиться как в реальном масштабе времени, так и с предварительным накоплением информации в памяти ЭВМ, т. е. со сдвигом по времени.

При исследовании сложных объектов или выполнении многофактор­ных экспериментов применяются измерительные системы, сочетающие высокое быстродействие с точностью. Такие ИИС характеризуются боль­шими потоками информации на их выходе.

Значительно повысить эффективность ИИС при недостаточной апри­орной информации об объекте исследования можно за счет сокращения избыточности информации, т. е. сокращения интенсивности потоков изме­рительной информации. Исключение избыточной информации, несущест­венной с точки зрения ее потребителя, позволяет уменьшить емкость устройств памяти, загрузку устройств обработки данных, а следователь­но, и время обработки информации, снижает требования к пропускной способности каналов связи.

При проектировании и создании ИИС большое внимание уделяется проблеме повышения достоверности выходной информации и снижения вероятностей возникновения (или даже исключения) нежелательных ситуаций. Этого можно достичь, если на ИИС возложить функции само­контроля, в результате чего ИИС способна осуществлять тестовые провер­ки работоспособности средств системы и тем самым сохранять метроло­гические характеристики тракта прохождения входных сигналов, проверять достоверность результатов обработки информации, получаемой посредством измерительных преобразований, и ее представления.

Все более широкое развитие получают системы, предусматривающие автоматическую коррекцию своих характеристик — самонастраивающие­ся (самокорректирующиеся) системы.

Введение в такие системы свойств автоматического использования результатов самоконтроля — активного изучения состояния ИИС — и приспособляемости к изменению характеристик измеряемых сигналов или к изменению условий эксплуатации делает возможным обеспечение заданных параметров системы.

Классификация ИИС по функциональному назначению

В зависимости от функционального назначения структуры ИИС под­разделяют по принципу построения. Рассмотрим основные особенности и отличия.

Собственно измерительные системы используются для различного рода комплексных исследований научного характера. Они предназначены для работы с объектами, характеризующимися до начала эксперимента минимумом априорной информации. Цель создания таких систем заклю­чается в получении максимального количества достоверной измеритель­ной информации об объекте для составления алгоритмического описа­ния его поведения.

Обратная связь системы с объектом отсутствует или носит вспомо­гательный характер. Как отмечалось, информация, полученная на выходе ИИС, может использоваться для принятия каких-либо решений, создания возмущающих воздействий, но не для управления объектом. ИИС пред­назначена для создания дополнительных условий проведения эксперимента, для изучения реакции объекта на эти воздействия. Следовательно, использо­вание информации не входит в функции ИИС. Эта информация предостав­ляется человеку-оператору или поступает в средства автоматической об­работки информации.

Для измерительных систем характерны:

·     более высокие по отношению к системам другого вида требования к метрологическим характеристикам;

·     более широкий спектр измеряемых физических величин и в особен­ности их количество (число измерительных каналов);

·     необходимость в средствах представления информации; это связано с тем, что основной массив информации с выхода систем передается чело­веку для принятия им решения об изменении условий проведения экспе­римента, его продолжении или прекращении. Поэтому определяющим требованием является неискаженное, наглядное и оперативное представ­ление текущей информации с учетом динамики ее обновления и быстро­действия системы, обеспечивающее удобство восприятия и анализа чело­веком;

·     большой объем внешней памяти для систем, в которых обработка и анализ результатов осуществляется после завершения эксперимента с помощью набора различных средств обработки и предоставления информации.

Разновидности ИС

·     ИС для прямых измерений, т. е. независимых измерений дис­кретных значений непрерывных величин;

·     статистические ИС, предназначенные для измерения статистичес­ких характеристик измеряемых величин;

·     системы, предназначенные для раздельного измерения зависи­мых величин.

Входными в ИС для прямых измерений являются величины, воспри­нимаемые датчиками или другими входными устройствами системы. Задача таких ИС заключается в выполнении аналого-цифровых преобра­зований множества величин и выдаче полученных результатов измерения.

В рассматриваемых ИС основные типы измеряемых входных величин могут быть сведены либо к множеству изменяющихся во времени вели­чин, либо к изменяющейся во времени t и распре­деленной по пространству Л непрерывной функции х (t, Л). При изме­рении непрерывная функция х (t, Л) представляется множеством дискрет.

Измерительные системы, производящие измерения дискрет функции  x(t, Л), основаны на использовании многоканальных, многоточечных, мультиплицированных и сканирующих структур.

Многоканальные системы объединяются в один из самых распространенных классов измерительных систем параллельного действия, применяемых во всех отраслях народного хозяйства. Основные причины столь широкого распространения многоканальных ИС заключаются в возмож­ности использования стандартных, относительно простых, измеритель­ных приборов, в наиболее высокой схемной надежности таких систем, в возможности получения наибольшего быстродействия при одновре­менном получении результатов измерения, в возможности индивидуального подбора СИ к измеряемым величинам.

Недостатки таких систем — сложность и большая стоимость по срав­нению с другими системами.

В измерительных системах последовательного действия - сканирую­щих измерительных системах — операции получения информации выпол­няются последовательно во времени с помощью одного канала измерения. Если измеряемая величина распределена в пространстве или собственно координаты точки являются объектом измерения, то восприятие инфор­мации в таких системах выполняется с помощью одного сканирующего датчика.

Сканирующие системы находят применение при расшифровке гра­фиков. В медицине, геофизике, метрологии, при промышленных испыта­ниях, во многих отраслях народного хозяйства и при научных исследова­ниях затрачивается значительное время на измерение параметров графичес­ких изображений и представление результатов измерения в цифровом виде. Для указанных целей промышленностью выполняются различные специализированные полуавтоматические расшифровочные устройства и системы ("Силуэт").

Сканирование может выполняться непосредственно воспринимающим элементом или сканирующим лучом при неподвижном воспринимающем элементе. Такими элементами могут быть оптико-механические или электронно-развертывающие  устройства.

Для измерения координат графических изображений применяются различные акустические системы. В геологии и картографии, океанологии и других областях при автоматизации проектирования осуществляются измерения и выдача в цифровом виде координат сложных графических изображений на фото носителях, чертежах и документах. При этом генера­тор (полуавтоматические измерения) лишь указывает точки изображения, координаты которых необходимо измерить. Используемые здесь датчики, как правило, осуществляют преобразование координат точек в интервалы времени прохождения световых или акустических импульсов между точ­ками, координаты которых были измерены.

При использовании в устройствах ЭВМ одновременно со считыванием координат осуществляют обработку графических изображений по задан­ной программе.

Голографические ИС (ГИС). Основу датчиков составляют лазеры, представляющие собой когерентные источники света, когерентная опти­ка и оптоэлектронные преобразователи. Голографические измерительные системы отличаются высокой чув­ствительностью и повышенной точностью, что послужило основой широ­кого их применения в голографической интерферометрии. Голографическая интерферометрия обеспечивает бесконтактное измерение и одно­временное получение информации от множества точек наблюдаемой по­верхности с использованием меры измерения — длины световой волны, известной с высокой метрологической точностью.

Выполнение условий минимальной сложности ИС приводит к необ­ходимости последовательного многократного использования отдельных устройств измерительного тракта, а следовательно, к применению ИС параллельно-последовательного действия, которые носят название многоточечных ИС. Работа таких ИС основана на принципе квантования измеряе­мых непрерывных величин по времени.

Измерительные системы с общей образцовой величиной — мультипли­цированные развертывающие измерительные системы — содержат мно­жество параллельных каналов. Структура системы включает датчики и устройство сравнения (одно для каждого канала измерения), источник образцовой величины и одно или несколько устройств представления из­мерительной информации. Мультиплицированные развертывающие изме­рительные системы позволяют в течение цикла изменения образцовой величины (развертки) выполнять измерение значений, однородных по физической природе измеряемых величин, без применения коммутацион­ных элементов в канале измерения. Такие ИС имеют меньшее количество элементов по сравнению с ИС параллельного действия и могут обеспечить практически такое же быстродействие.

Статистические измерительные системы. Статистический анализ слу­чайных величин и процессов широко распространен во многих отраслях науки и техники. При статистическом анализе используются законы рас­пределения вероятностей и моментные характеристики, а также корреля­ционные спектральные функции.

Системы для измерения законов распределения вероятностей слу­чайных процессов - анализаторы вероятностей - могут быть одно- и много­канальными.

Одноканальные анализаторы вероятностей за цикл анализа реализации x(t) позволяют получить одно дискретное значение функции или плот­ности распределения исследуемого случайного процесса.

Многоканальные анализаторы позволяют получать законы распреде­ления амплитуд импульсов и интервалов времени между ними, амплитуд непрерывных временных и распределенных в пространстве случайных процессов и др. Многоканальные анализаторы широко используются в ядерной физике, биологии, геофизике, в химическом и металлургическом производствах. При этом используются аналоговые, цифровые и смешан­ные принципы построения анализаторов.

Существует два основных метода построения корреляционных изме­рительных систем. Первый из них связан с измерением коэффициентов корреляции и последующим восстановлением всей корреляционной функ­ции, второй - с измерением коэффициентов многочленов, аппроксими­рующих корреляционную функцию.

По каждому из этих методов система может действовать последова­тельно, параллельно, работать с аналоговыми или кодоимпульсными сиг­налами и в реальном времени.

Значительный класс статистических ИС - корреляционные экстремаль­ные ИС — основан на использовании особой точки — экстремума корре­ляционной функции при нулевом значении аргумента. Корреляционные экстремальные ИС широко применяются в навигации, радиолокации, металлообрабатывающей, химической промышленности и в других об­ластях для измерения параметров движения разнообразных объектов.

Выделение сигналов на фоне шумов, измерение параметров движе­ния, распознавание образов, идентификация, техническая и медицинская диагностика - это неполный перечень областей практического приме­нения методов и средств корреляционного анализа. В настоящее время подавляющий объем статистического анализа выполняется корреляцион­ными ИС, содержащими ЭВМ, либо отдельными устройствами со сред­ствами микропроцессорной техники.

Системы спектрального анализа предназначены для количественной оценки спектральных характеристик измеряемых величин. Существую­щие методы спектрального анализа основываются на применении частот­ных фильтров или на использовании ортогональных преобразований слу­чайного процесса и преобразований Фурье над известной корреляционной функцией.

Различают параллельный фильтровый анализ (полосовые избиратель­ные фильтры-резонаторы), последовательный фильтровый анализ (пере­страиваемые фильтры и гетеродинные анализаторы), последовательно-параллельный анализ.

Достоинства бесфильтровых анализаторов, основанных на определе­нии коэффициентов ряда Фурье, связаны с получением высокой разре­шающей способности, что позволяет их использовать для детального ана­лиза определенных участков спектра.

Системы для раздельного измерения взаимосвязанных величин при­меняются в следующих случаях:

·     исследуемое явление или объект характеризуется множеством неза­висимых друг от друга величин и при нали­чии селективных датчиков можно осуществить измерение всех значений

·     при независимых, но не селективных датчиках, сигналы на вы­ходе которых содержат составляющие от нескольких величин, встает задача выделения каждой измеряемой величины;

·     если элементы связаны между собой, то также необходимо осуществить раздельное измерение величин х.

Наиболее типичные задачи взаимно связанных измерений - измерение концентрации составляющих многокомпонентных жидких, газовых или твердых смесей или параметров компонентов сложных элек­тронных цепей без гальванического расчленения.

При раздельном измерении взаимосвязанных величин осуществляется воздействие на многокомпонентное соединение в целях селекции и измере­ния нужного компонента. Для механических и химических соединений существуют различные методики и средства такого раздельного измерения: масс-спектрометрия, хроматография, люминесцентный анализ и др.

Системы, измеряющие коэффициенты приближающих многочленов, называются аппроксимирующими (АИС) и предназначены для количест­венного описания величин, являющихся функциями времени, простран­ства или другого аргумента, а также их обобщающих параметров, опреде­ляемых видом приближающего многочлена.

Информационные операции в АИС выполняются последовательным, параллельным или смешанным способом. АИС реализуются с разомкнутой или замкнутой информационной обратной связью, в виде аналоговых или цифровых устройств.

При создании и использовании АИС выбирают тип приближающего многочлена и с учетом заданной погрешности аппроксимации определяют порядок функции.

Реализация задач АИС требует знания априорных сведений об исход­ной функции, учета метрологических требований к измерениям и др. При этом в качестве базисных функций могут быть выбраны ряды Фурье, разложения Фурье-Уолша, Фурье-Хаара, многочлены Чебышева, Лагранжа, Лежандра, Лагерра и др.

К основным областям применения АИС относятся измерение статис­тических характеристик случайных процессов и характеристик нелиней­ных объектов, сжатие радиотелеметрической информации и информации при анализе изображений, фильтрация-восстановление функций, генерация сигналов заданной формы.

Системы автоматического контроля (САК). Системы автоматичес­кого контроля предназначены для контроля технологических процессов, при этом характер поведения и параметры их известны. В этом случае объ­ект контроля рассматривается как детерминированный.

Эти системы осуществляют контроль соотношения между текущим (измеренным) состоянием объекта и установленной "нормой поведения" по известной математической модели объекта. По результатам обработки полученной информации выдается суждение о состоянии объектов конт­роля. Таким образом, задачей САК является отнесение объекта к одному из возможных качественных состояний, а не получение количественной информации об объекте, что характерно для ИС.

В САК благодаря переходу от измерения абсолютных величин к от­носительным (в процентах "нормального" значения) эффективность ра­боты значительно повышается. Оператор САК при таком способе коли­чественной оценки получает информацию в единицах, непосредственно характеризующих уровень опасности в поведении контролируемого объ­екта (процесса).

Как правило, САК имеют обратную связь, используемую для воздей­ствия на объект контроля. В них внешняя память имеет значительно мень­ший объем, чем объем памяти ИС, так как обработка и представление информации ведутся в реальном ритме контроля объекта.

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.