скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Застосування симетричних многочленів

ab =.

Тоді ми маємо

Але це означає, що числа a і b являються коренями квадратного рівняння (*). Теорема доведена.

Наведемо приклади.

Приклад 1. Розв’язати систему рівнянь

Введемо нові невідомі  знаходимо:


а тому для нових невідомих отримуємо наступну систему рівнянь:

З цієї системи рівнянь отримуємо .

Отже,  тобто для первинних невідомих x, y ми отримуємо наступну систему рівнянь :

Ця система рівнянь легко розв’язується, і ми отримуємо наступний розв’язок первинної системи:

Приклад 2. Розв’язати систему рівнянь

Розв’язання проводиться аналогічно. Вважаючи, що  приводимо початкову систему до вигляду

Звідси для  отримуємо квадратне рівняння

Чи


З цього рівняння знаходимо два значення для:

Таким чином, для первинних невідомих x, y отримуємо дві системи рівнянь:

 та Розв’язавши ці системи, знаходимо чотири розв’язки первинної системи:

  

 

2.2 Доведення тотожностей

У цілому ряді завдань на доведення тотожності також з успіхом можуть бути застосовані елементарні симетричні многочлени. За основною теоремою симетричних многочленів, кожну степеневу суму  можна представити у вигляді многочлена від,

Таблиця 2. 1 Вирази степенних сум  через,


Кожну степеневу суму можна представити у вигляді многочлена від , , за умови, що .

Таблиця 2.2 Вирази степенних сум  через  при виконанні умови

Існують одночлени, які не змінюються при перестановці змінних – симетричні одночлени. Легко побачити, що усі змінні в такий одночлен повинні входити в одному і тому ж степені, тобто цей одночлен повинен збігатися з добутком  (взятий з деяким числовим коефіцієнтом).

Якщо показники степеня одночлена є різними то цей одночлен не є симетричним. Щоб отримати симетричний одночлен, одним із доданків, якого є, необхідно додати до нього інші одночлени.

Позначимо через O – многочлен з найменшим числом членів, одним із доданків, якого є одночлен, цей многочлен має назву орбіта.

Для отримання орбіти одночлена необхідно додати до нього одночлени отримані за допомогою перестановок змінних x, y, z. Якщо три показники степеня (k, l, m) не рівні між собою, то орбіта O( буде складатися з шести членів. Наприклад:

О(

Частинним випадком таких орбіт є степеневі суми:


O(

Якщо k = l = m, то орбіта є одночленом:

О(.

З цих формул за допомогою співвідношень

(*)

Якщо k = l, то отримаємо

(**)

З цього легко отримати вирази орбіт O(xkyl) через за умови, що

У таблиці 2.3 наведені вирази деяких орбіт O(xkyl) через ,  

Таблиця 2.3 Вирази орбіт O(xkyl) через

Наприклад,


Приклад 1. Довести, що якщо x + y + z = 0, то

За таблицею 2.1 маємо:

.

За умовою s1 = x + y + z = 0, і тому .

 

Приклад 2. Довести, що якщо

x + y + z = , то xyz = 0.

Умова завдання записується у вигляді

З цієї системи рівності знаходимо, що s2=0 і s3 = 0. Рівність s3=0 і означає, що xyz=0.

Приклад 3. Довести, що якщо x + y + z = 0 і xy + xz + yz = 0, то справедлива рівність

З наведеної таблиці 2.3, легко знаходимо (за умов  ) :


крім того, згідно таблиці 2.2:

З цих співвідношень безпосередньо витікає доводжувана рівність.

Приклад 4. Довести, тотожність

Для доведення позначимо число (– a – b) через c: с = – a – b.

Тоді a + b + c = 0 і можна застосувати формули, запропоновані у таблиці 2. 2. Ліва частина доводжуваної тотожності перетвориться таким чином:

а права - таким чином:

Таким чином, доводжувана рівність справедлива.

Вказані способи доведення тотожності нерідко застосовуються у поєднанні з наступним прийомом: якщо обидві частини, тієї тотожності, що доводимо, виражається через різниці ab, bc, ca, то зручно зробити заміну x = ab, y = bc, z = ca, тоді x + +y + z = (ab)(bc)(ca) = 0 і тому можна застосовувати формули, запропоновані у таблиці 2. 2. Той же прийом можна застосовувати при розкладанні на множники многочленів, що виражаються через різниці ab, bc, ca. Розглянемо приклад.

Приклад 5. Розкласти на множники многочлен

Вважаючи, що x = ab, y = bc, z = ca, знаходимо:

Ми скористались формулою  , запропонована у таблиці 2. 2.

 

2.3 Звільнення від ірраціональності

Симетричні многочлени дозволяють розв’язати багато важких завдань про звільнення від ірраціональності в знаменнику. У разі, коли знаменник має вигляд  або  цю задачу можна вирішити і без застосування симетричних многочленів. Для цього досить використовувати формули


Складніше йде справа, якщо знаменник складається з трьох або більшого числа ірраціональних доданків. Тут і можуть допомогти симетричні многочлени. Розглянемо наступні приклади.

Приклад 1. Звільнитися від ірраціональності в знаменнику виразу

Покладемо  Тоді знаменник є не чим іншим, як елементаpним симетричним многочленом Спробуємо підшукати множник, після множення на який знаменник вдасться виразити через статечні суми s2 і s4. Оскільки ці степеневі суми мають вигляд

знаменник стане раціональним виразом. Для знаходження цього множника використовуємо формули

 

(За табл. 2.1.). Ми бачимо, що в обох степеневих сумах лише останній доданок (у правій частині) не ділиться на . Але дуже легко скомбінувати ці степеневі суми так, щоб останні доданки, що заважають нам, взаємно знищилися. Для цього суму  піднесемо до квадрату


і віднімемо з цього квадрата подвоєну суму . Ми отримаємо:

,

Звідки:

)

Згадуючи, що ми знаходимо (використовуючи вказані вище співвідношення

Залишається помножити обидві частини отриманої рівності на q .

Зауваження. Щоб уникнути дещо неприємного (при розкритті дужок в чисельнику) вираження, можна було б спочатку перетворити чисельник в правій частині формули (*). Використовуючи співвідношення

ми можемо переписати формулу (*) у вигляді


Звідси ( вважаючи, як і раніше,  ) отримуємо рішення задачі в зручнішому вигляді:

 

Приклад 2. Звільнитися від ірраціональності в знаменнику виразу

Напишемо вираз степеневої суми s3 :

В правій частині тільки останній доданок  не ділиться на  . Переносячи його в ліву частину, отримуємо:

,

Звідки:

Поклавши  знаходимо:


Ми бачимо, таким чином, що якщо знаменник дробу має вигляд  , то після множення чисельника і знаменника на вираз

,

у знаменнику отримаємо вираз

 

Тепер для звільнення від ірраціональності досить використати формулу:

.

Потрібно помножити чисельник і знаменник на вираз

В результаті отримаємо:

Розглянуті приклади є окремими випадками наступного завдання. Нехай треба позбавитися від ірраціональності в знаменнику виразу


Іншими словами, ми повинні представити цей вираз у вигляді:

де A може бути скільки завгодно складним ірраціональним виразом, але знаменник B має бути раціональним. Ясно, що знаменник буде раціональним, якщо в нього самі корені  не входять, а входять лише їх n-і степені. Іншими словами, позначивши  ми повинні відшукати тотожність виду:

де f і g – деякі многочлени. Ця рівність переписується у вигляді

. І так, нам потрібно знайти такий многочлен від трьох змінних, що  ділиться на  

Як же знайти такий многочлен g? Спробуємо використовувати симетричні многочлени. Простими прикладами симетричних многочленів, залежних тільки від (n – x) степеней змінних x, y, z, можуть служити степеневі суми

,


Якщо нам вдасться скомбінувати ці степеневі суми так, щоб побудований з них многочлен g, якій би ділився на s1, то наше завдання вирішене.

Іноді буває важко скомбінувати степеневі суми sn, s2n, s3n, . . ., щоб отриманий з них многочлен, який би ділився б на  В цьому випадку може допомогти наступний прийом. Спробуємо використовувати (для отримання многочлен, що ділиться на) не тільки степеневі суми sn, s2n, s3n, . . ., але також і величину Адже при   ми маємо  тобто до раціональних виразів sn, s2n, s3n, . . , ми додаємо лише одну ірраціональність . Для звільнення від цієї ірраціональності, що залишилася, можна скористатися способами, вказаними на початку цього пункту.

 

2.4 Вилучення коренів

Вилучення коренів можна нескладно виконати за допомогою так званого методу послідовних наближень. Додатково з цим методом можна ознайомитись в роботі [3]. Ми опишемо один спосіб побудови послідовних наближень, пов'язаний з симетричними многочленами.

Нехай треба обчислити, де N - деяке додатнє число. У якості «нульових наближень» виберемо довільні додатні числа і додамо до них число

 

Взяті числа володіють тією властивістю, що їхній добуток


Обчислимо тепер елементарні симметричні многочлени від чисел a ,які складають нульове наближення, і в якості першого наближення візьмемо числа

Добуток усіх чисел першого наближення дорівнює

тобто так як і раніше дорівнює N.

Тепер складемо елементарні симетричні многочлени від чисел  ,які складають перше наближення, і по ним так само знайдемо наступне, друге, наближення:

Добуток всіх чисел другого наближення знову рівний N. Потім по числах другого наближення складемо третє наближення Можна довести, що при кожна з величин що складає n-те наближення, прямує до .

Приклад 1. При k = 2, тобто при вилученні квадратного кореня ми маємо такі формули:


і взагалі

,

Нехай, наприклад, потрібно обчислити Приймемо за число 2. Тоді отримуємо послідовно:

Переводячи прості дроби в десяткові, маємо:

тобто третє наближення дає вже сім вірних знаків після коми! (Легко побачити, що одне з чисел , дає наближення числа з надлишком, а інше — з недостачею, бо їх добуток дорівнює N.)

Приклад 2. При k = 3, тобто при вилученні кубічного кореня, формули будуть наступними:


і взагалі

Нехай, наприклад, потрібно обчислити . Покладемо. Тоді отримуємо послідовно:

,  

 ,  


Переводячи звичайні дроби в десяткові, маємо:

  

Наступне наближення починається з числа

Якщо обчислити  і , то ми переконаємося, що п'ять знаків тут правильні.


ВИСНОВКИ

Дана курсова робота присвячена симетрії в алгебрі, зокрема, застосуванню симетричних многочленів. В даній роботі було розглянуто: загальні поняття про симетричні многочлени, їх основні властивості, основна теорема теорії симетричних многочленів та застосування симетричних многочленів до розв’язуванні рівнянь, систем рівнянь, вилучення коренів, доведення тотожностей, звільнення від ірраціональності у дробах тощо.

У курсовій роботі було розглянуто способи розв’язувань систем рівнянь і приклади їх розв’язання; було виражено степеневі суми  через  при умові  (результати наведені в таблиці 2.2), введено означення орбіт O(xkyl), виражено орбіти O(xkyl) через (результати наведені в таблиці 2.2); були розглянуті випадки, коли для звільнення від ірраціональностей необхідно застосовувати симетричні многочлени; було розглянуто спосіб побудови послідовних наближень, пов'язаний з симетричними многочленами. Кожен параграф проілюстровано прикладами.


СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Болтянский В. Г., Виленкин Н. Я. Симметрия в алгебре. – М.: МЦНМО, 2002.-240 с.

2. Вейл Г. ,Симметрия.-М.: Наука, 1968.-192 с.

3. Віленкін Н. Я., Метод послідовних наближень. - М.: Физматгіз. - 1961.-203с.

4. Винберг Э. Б. Симметрия многочленов. – М.: МЦНМО, 2001.-24 с.

5. Завало С.Т. та ін. Алгебра і теорія чисел: Практикум. Частина 2. - К.: Вища шк., 1986. - 264с.

6. Кудряшов Н. А. Симетрия алгебраических и дифференциальных уравнений. Соросовский образовательный журнал, №9, 1998, с. 104-110.


Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.