скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Организация и применение микропроцессорных систем обработки данных и управления

При приеме данных последовательные кодовые сигналы принимаются в сдвигающий приемный регистр (СПрР). Затем информационные разряды данных параллельно передаются в приемный регистр данных УАПП.

Как уже отмечалось, МП при взаимодействии с УАПП выполняет четыре основные операции, которые аналогичны чтению и записи данных, осуществляемых в определенных регистрах УАПП. Один и тот же адрес используется для операций с регистрами состояния и управления, поскольку сигнал на шине Чт/Зп магистрали управления точно дополняет адрес кода команды. Аналогично, оказывается достаточно только одного кода адреса для операций с приемным и передающим регистрами данных РгД.

Если формат последовательных сигналов данных может быть реализован рассмотренными средствами приемника и передатчика, то УАПП используют для работы с любыми внешними устройствами последовательного действия без необходимости применения новых команд или каких-либо дополнительных аппаратурных средств.

Для настройки аппаратурных интерфейсов средств УАПП на определенные функции приема-передачи данных необходимо выполнить его программную инициализацию. Рассмотрим функции, определяемые каждым битом типичного управляющего слова.

Бит “Разрешение прерывания при приеме” управляет вместе с битом “Готовность слова данных” регистра состояния УАПП выработкой сигнала запроса прерывания работы МП при приеме данных.

Бит “Разрешение прерывания при передаче данных” управляет вместе с битом “Окончание передачи слова данных” регистра статуса выработкой сигнала запроса прерывания работы МП при передаче данных.

Несколько битов управляющего регистра используются для кодирования разрядности слов (7 или 8 бит), четности/нечетности или отсутствия контроля, количества СТОП-битов (1 или 2).

Два бита кода управляющего слова достаточно для задания сигналов сброса управляющих цепей УАПП и определения коэффициента деления частоты синхроимпульсов при приеме данных. Отметим, что инициализации УАПП предшествует сброс управляющих цепей посылкой кода управляющего слова, в котором заданы условия обнуления (установкой соответствующих управляющих битов в уровень “1”).

Коэффициент деления частоты синхроимпульсов отражает принятую схему выделения принимаемых информационных сигналов. Как уже было показано, начальная синхронизация вызывается СТАРТ-битом, сообщающим приемнику, что далее следуют, биты данных, четности, СТОП.

Чтобы облегчить синхронизацию работы внешних устройств, в УАПП используется в 16 или 64 раза более высокая частота, чем скорость передачи данных, определяемая соотношением 1/Тп. Следовательно, один период следования синхроимпульсов, передаваемых в УАПП, должен быть равен 1/16 Тп или 1/64 Тп. Поэтому после обнаружения перехода “1” или “0”, вызываемого СТАРТ-битом, с помощью средств УАПП можно подтвердить этот переход через 8 (или 32) периодов (т.е. приблизительно в середине периода Тп) и установить, что именно СТАРТ-бит имеет место, а не случайная помеха. Аналогичным образом осуществляется стробированием всех остальных информационных переходов внутри периода следования последовательных сигналов, что увеличивает вероятность правильного выделения информационных сигналов на уровне помех.

Узлы управления приемом и передачей данных (УУПд и УУПр) ведут анализ поступаемых и передаваемых сигналов. В случае отклонения от заданного режима эти блоки управления формируют уровень “1” соответствующих битов в регистре состояния.

Регистр состояния фиксирует следующие важные сигналы состояния. Бит “Запрос прерывания” всегда находится в состоянии, соответствующем сигналу “Запрос прерывания работы МП” УАПП. Этот бит сбрасывается в состояние “0”, когда МП выполняет команды чтения или записи данных в приемных – передающих регистрах УАПП. Установка бита “Запрос прерывания” в регистре состояния УАПП позволяет МП выделить только один УАПП, выставивший запрос прерывания, из нескольких УАПП, работающих параллельно в системе. Микропроцессор по своим внутренним программам может осуществить последовательное считывание и анализ данного бита в кодах состояний всех подключенных УАПП и выделить активный интерфейсный контроллер, т.е. сформировавшийся сигнал запроса прерывания.

Бит “Контроль четности” соответствует состоянию четности битов данных, если четность включена в формат и задана в управляющем слове. При нарушении четности данный бит регистра состояния устанавливается в значение “1”, что позволяет обратить внимание МП на нарушение установленного режима работы.

Как только завершается прием последовательного слова с приемного сдвигающего регистра, УУПр выполняет анализ количества СТОП-битов. При обнаружении каких-либо отклонений генерируется сигнал “Ошибка форматирования” путем установки соответствующего бита регистра в состояние “1”.

При приеме данных УАПП сформированные слова передаются из сдвигающего регистра в приемный РгД, а из него в МП. Если после приема одного слова не поступил запрос на его передачу в МП, то другое последовательное слово, сформированное в сдвигающем регистре, не может быть передано в приемный РгД. Поскольку приемный РгД заполнен, передача в него второго слова затрет первое. При этом теряется слово данных и нарушается правильная работа системы. Поэтому обнаружение факта приема следующего слова до передачи в МП предыдущего ведет к установке РгС в “1” бита “Ошибка переполнения”. Этот сигнал сообщает МП о том, что произошла потеря слова в процессе передачи последовательного массива данных.

Бит “Приемный регистр данных заполнен” свидетельствует о готовности слова данных к передаче в МП.

Бит “Передающий регистр данных освобожден” устанавливается в состояние “1” после передачи содержимого передающего регистра данных в сдвигающий регистр данных передатчика. Этот сигнал регистра состояния указывает микропроцессору те моменты, в которые может быть осуществлена передача очередного слова данных из МП и УАПП.

В составе регистра состояния УАПП могут быть также триггеры, устанавливаемые сигналами состояния модемов. Модемы – электронные блоки связи МП с дистанционно отдаленными внешними устройствами по телефонной линии связи. Они преобразуют цифровую информацию в аналоговую, предназначенную для распространения по телефонным линиям связи. Модемы ставятся на обоих концах линии связи для осуществления процессов модуляции и демодуляции цифровой информации.

Большая степень автономности работы УАПП позволяет обеспечить высокую эффективность использования МП в системе, поскольку требует от него только данных по инициализации своего состояния и позволяет МП выполнять вычислительный процесс одновременно с выполнением процесса ввода-вывода информации в УАПП. Отметим также, что развитые 16-разрядные МП имеют все те возможности, которые обеспечиваются в микросистемах на основе обычных МП и БИС УАПП.

3. Логическая структура микропроцессорной системы на основе комплекта БИС секционного микропроцессора

Комплект БИС секционного микропроцессора

Вследствие малой разрядности секций микропроцессора и определенности функционального наполнения их реализуют, как правило, в виде биполярных БИС в корпусе с 42 – 64 выводами. Большое количество выводов корпуса одной секции БИС и внутренняя логическая структура секции микропроцессора обеспечивают построение микро-ЭВМ различной разрядности с наращиваемым числом входов прерываний, различным количеством подключаемых УВВ и т.д.

В состав комплекта БИС секционного микропроцессора входит значительное число секций. Рассмотрим наиболее важные из них.

Секции арифметическо-логических БИС используются для построения операционных блоков обработки информации. Они включают в себя несколько разрядов АЛБ, управляющих регистров, СОЗУ и узлов связи с информационными магистралями. Секции БИС опережающего параллельного переноса позволяют объединить арифметическо-логические секции в высокоскоростные блоки обработки информации за счет создания пирамидальных схем ускоренного переноса.

Секции БИС для задания последовательности микрокоманд, применяемые для построения блоков микропрограммного управления, дают возможность вырабатывать выходной код в зависимости от внешнего управляющего кода, кода состояния процессора, содержимого внутреннего стека, а также внутреннего состояния самой секции.

При микропрограммном управлении каждой команде соответствует микропрограмма – последовательность микрокоманд, выполнение которых приводит к выполнению операций, заданных командой. Микрокоманда управляет выполнением одной или нескольких микроопераций.

БИС микропрограммного управления на основе программируемой логической матрицы (ПЛМ)

 

Рис.8 Структура программируемой матрицы

Схема ПЛМ приведена на рис.8, она содержит логические матрицы адресов И и данных ИЛИ, с помощью которых осуществляется преобразование входного n-разрядного кода в m-разрядный выходной код. Матрицы данных ПЗУ и ПЛМ совпадают. Различие ПЗУ и ПЛМ существует только между матрицами адресов или дешифраторами адресов.

При построении дешифратора адресов ПЗУ обязательна постановка коммутирующих элементов между входными шинами и шинами переходных функций. Поэтому в дешифраторе каждой комбинации входных сигналов соответствует одна и только одна переходная функция. Всего переходных функций . В ПЛМ коммутирующие элементы для ряда входных переменных могут отсутствовать. Поэтому некоторые переменные не влияют на выбор переходной функции. Число переходных функций ПЛМ .

На практике получили распространение ПЛМ с многоразрядными адресами, для которых число входных переменных равно 16.24 разрядам и более. ПЗУ и ПЛМ различаются по системе адресации информационного поля данных, распределению информационных полей, возможности одновременного опроса нескольких переходных функций. Так как в ПЛМ осуществляется избыточная свободная адресация, а в ПЗУ – жесткая не избыточная адресация, то в ПЛМ большому количеству входных комбинаций адресов соответствует малое количество адресуемых переходных функций. Разные адреса могут определять одну и ту же переходную функцию или не определять ни одной. Кроме того, возможны варианты, когда один адрес определяет более одной переходной функции.

Специфика внутреннего распределения информационных полей в ПЛМ заключается в том, что посредством двух (или более) различных адресов можно адресовать одну и ту же область данных матрицы, что позволяет обращаться к микропрограммам по различным адресам. Следовательно, появляется возможность микропрограммного перехода к микропрограммам из различных текущих условий без выполнения специальных микрокоманд перехода. Эта особенность адресации обеспечивается наличием безразличных разрядов в коде адреса.

Одновременность выбора двух (и более) выходных информационных слов и объединение их по ИЛИ на выходе ПЛМ определяются возможностью адресации различных переходных функций одним адресом. При этом сохраняется выбор каждого информационного слова своим специфичным адресом. Жесткая не избыточная адресация ПЗУ позволяет иметь однозначное соответствие адресов и слов в информационном поле данных.

Обычная ПЛМ – комбинационная логическая схема. Чтобы построить микропрограммный последовательностный автомат, необходимы регистры на входах и выходах ПЛМ и обратная связь для задания закона выработки последовательностных состояний. Встраивание входных и выходных регистров в блок управления с ПЛМ обеспечивает автономную функциональную законченность БИС. Управление приемом и выдачей информационных состояний регистров позволяет использовать такую БИС в любой асинхронной (а также синхронной) микро-ЭВМ и снимает проблему “гонок” (“состязаний”).

Рис.9 Схема БИС микропрограммного управления на основе программируемой логической матрицы

Схема БИС микропрограммного управления вертикального типа с информационным полем на основе ПЛМ приведена на рис.9. Она содержит ПЛМ, регистр команд РгК, регистр состояния системы РгС, регистр следующего адреса микрокоманды РгАМК, буферный регистр следующего адреса микрокоманды БРгАМК, регистр внутренних состояний блока микропрограммного управления РгСМУ, выходной регистр микрокоманд РгМК, а также узел местного управления и синхронизации УМУиС. В качестве входной информации в ПЛМ подаются код команды (например, 16-разрядный), код следующего адреса (например, 4-разрядный) и несколько разрядов кода состояния системы, определяющих формирование условий переходов в микропрограммах и обработку сигналов прерывания.

Выходной код ПЛМ обычно содержит 20-30 разрядов, поскольку микрокоманды большей разрядности требуют применения корпусов БИС с большим количеством выводов. Часть выходных сигналов ПЛМ не выводится из БИС. Код следующего адреса микрокоманды записывается в регистр БРгАМК, а затем передается в регистр РгАМК. Сигналы с регистра РгСМУ делятся на две группы, одна из которых передается внутри БИС в УМУиС, а вторая через контакты корпуса выводится из БИС и используется блоком БЦУиС. В каждом машинном такте микрокоманда выдается на информационную магистраль микрокоманд ИММК, а в РгАМК заносится некоторый код, определяющий вместе с командами РгС и РгСМУ адрес следующей команды.

Свойство одновременности выбора нескольких выходных адресных шин ПЛМ увеличивает информационную насыщенность ПЛМ по сравнению с ПЗУ и позволяет выиграть в 3-10 раз в числе элементов, требуемых для построения информационных полей БИС.

Секции БИС приоритетно векторного прерывания включают в себя регистры приема внешних сигналов запросов прерывания, кода маскирования состояния, приоритетный шифратор, узел формирования кода приоритетного вектора, блоки местного микропрограммного управления и управления информационными магистралями.

Секции БИС триггерных регистров широкого назначения используются для организации разнообразных буферов хранения цифровой информации.

Секции БИС приемопередатчиков информации (с контролем правильности передачи или без него) содержат буферные регистры для хранения входной и выходной информации, усилители для работы на внешние информационные магистрали (как правило, с тремя внутренними состояниями: “Включено”, “Выключено”, “Отключено”).

Комплект БИС для построения электронной системы

В состав всех комплектов БИС (в том числе и секционных) входят БИС ОЗУ, ПЗУ, программируемого ПЗУ или ППЗУ, ПЛМ, программируемой ПЛМ или ППЛМ, имеющие разнообразную организацию информационных полей и управляющие интерфейсной логикой. Они позволяют создавать наращиваемые поля оперативной, постоянной и микропрограммной памяти, работать с прямыми и интерфейсными информационными сигналами, строить многовходовые системы адресной выборки, цепи контроля передаваемой и хранимой информации и т.д.

Логическая структура процессора на основе комплекта БИС секционного микропроцессора

Развитая внутренняя структура секционных комплектов БИС микропроцессора обеспечивает возможность построения высокопроизводительных средств эффективной эмуляции развитых микро-ЭВМ и позволяет создавать гибкие эффективные системы с адаптацией к области применения.

Рис.10 Обобщенная структрура процессора на основе БИС комплекта секционного микропроцессора

Обобщенная структура процессора на основе комплекта БИС приведена на рис.10. В основу процессора положены секции микропроцессоров МП и секции ускоренного опережающего переноса (Рассматриваемые микропроцессоры могут быть построены на основе микропроцессорных комплектов серий КР582, К583, КР584, К589, К1800, КР1802, КР1804, U83-К1883). Для построения интерфейсных схем применены секции приемопередатчиков сигналов ППС, позволяющие организовать двунаправленные магистрали данных, адресов и сигналов управления. Блок микропрограммного управления строится на основе ПЗУ или ППЗУ, а также БИС выработки последовательности управляющих сигналов. Последние применяются в качестве блока управления микрокомандами БУМК. Для управления приоритетными векторными прерываниями используются соответствующие секции БИС ПВП для построения регистров – секции БИС регистров универсального назначения. Блок местного управления БМУ управляет всей системой.

Поскольку секции микропроцессора имеют некоторый набор рабочих регистров общего назначения, любые из них могут быть выделены в качестве счетчика команд, регистра – указателя стека или других рабочих и управляющих регистров.

Рассмотрим взаимодействие основных блоков процессора. Команда извлекается из ОЗУ и по магистрали данных МД передается регистр команд РгК. Код команды поступает через блок адресации БА и блок управления микрокомандами БУМК, чтобы преобразовать его в первый адрес микрокоманды в запоминающем устройстве микрокоманд ЗУМК. Затем выполняется несколько микроопераций для поиска данных в ОЗУ и передачи их в микропроцессор МП, выполнения операций в арифметическо-логическом блоке, контроля переполнения и запросов на прерывание и т.д.

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.