скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Градиентный метод первого порядка

Курсовая работа: Градиентный метод первого порядка

Содержание

Введение

Градиентные методы оптимизации

Градиентный метод первого порядка

Алгоритм градиентного метода

Математическое описание системы и значения переменных

Построение математической модели

Алгоритм реализации решения задачи построения динамической модели

Апробирование машинной программы

Результаты работы программы

Вывод

Список литературы

Листинг программы


Введение

На современном этапе научно-технического прогресса необыкновенно возрастает роль средств, позволяющих рационально использовать ресурсы, выделенные для решения народнохозяйственных задач. Кибернетика предлагает такие средства, как исследование операций, теория систем, математическое моделирование, теория эксперимента, вычислительная техника и др.

Часть этих методов предназначена для увеличения эффективности научного эксперимента на всех стадиях разработки, исследования, проектирования и эксплуатации производств. Единство теории и практики эксперимента совместно с вычислительной техникой образуют комплекс автоматизированного эксперимента, предназначенный для повышения производительности научного труда.

Объекты, на которых проводятся эксперименты, отличаются прежде всего протекающими в них процессами. Объект, на котором осуществляется планируемый эксперимент, характеризуется обязательным условием — все входные переменные, или факторы, x1, x2, ..., xn должны быть управляемыми. Этого требует сама постановка условий построения динамической модели, предполагающих активное вмешательство в ход эксперимента. Такой объект технологии называют объектом исследования.

Необходимыми и достаточными условием для определения любой отрасли знаний как науки является наличие: предмета исследования, метода исследования и средства для реализации этого метода. Для кибернетики как науки предметом исследования являются системы любой природы и их управляемость, методом исследования - математическое моделирование, стратегией исследования - системный анализ, а средством исследования - вычислительные машины.

Кибернетика включает в себя такие понятия, как системы, информация, хранение и переработка информации, управление системами и оптимизация систем. При этом кибернетика широко пользуется методом математического моделирования и стремится к получению конкретных результатов, позволяющих анализировать и синтезировать изучаемые системы, прогнозировать их оптимальное поведение и выявлять каналы и алгоритмы управления.

Методы кибернетики не только позволяют создавать оптимально функционирующий процесс или систему, но указывают пути выбора и использования оптимального режима, а также оптимального управления процессом или системой.

Понятие «системы» дает возможность осуществить математическую формализацию изучаемых объектов, обеспечивающую глубокое проникновение в их сущность и получение широких обобщений и количественных закономерностей.

Всякая система состоит из взаимосвязанных и взаимодействующих между собой и с внешней средой частей и в определенном смысле представляет собой замкнутое целое (иначе ее нельзя было бы назвать системой).

Система - это достаточно сложный объект, который можно расчленить (провести декомпозицию) на составляющие элементы, или подсистемы. Эти элементы информационно связаны друг с другом и с окружающей средой объекта. Совокупность связей образует структуру системы. Система имеет алгоритм функционирования, направленный на достижение определенной цели.

Системный анализ - это стратегия изучения сложных систем. В качестве метода исследования в нем используется математическое моделирование, а основным принципом является декомпозиция сложной системы на более простые подсистемы. В этом случае математическая модель системы строиться по блочному принципу: общая модель подразделяется на блоки, которым можно дать сравнительно простые математические описания. Необходимо иметь в виду, что все подсистемы взаимодействуют между собой, составляя общую единую математическую модель.

В основе стратегии системного анализа лежат следующие общие положения:

1. Четкая формулировка цели исследования;

2. Постановка задачи по реализации этой цели и определение критерия эффективности решения задачи;

3. Разработка развернутого плана исследования с указанием основных этапов и направлений решения задач;

4. Пропорционально - продвижение по всему комплексу взаимосвязанных этапов и возможных направлений;

5. Организация последовательных приближений и повторных циклов исследований на отдельных этапах;

6. Принцип нисходящей иерархии анализа и восходящей иерархии синтеза в решении составных частных задач и т.п.

Системный анализ организует наши знания об объекте таким образом, чтобы помочь выбрать нужную стратегию либо предсказать результаты одной или нескольких стратегий, представляющихся целесообразными темами, кто должен принимать решения. С позиции системного анализа решаются задачи моделирования, оптимизации, управления и оптимального проектирования систем.

Особый вклад системного анализа в решение различных проблем заключается в том, что он позволяет выявить факторы и взаимосвязи, которые в последствии могут оказаться весьма существенными, дает возможность видоизменить методику наблюдений и построить эксперимент так, чтобы эти факторы были включены в рассмотрение, и освещает слабые места гипотез и допущений. Как научный подход системный анализ с его акцентом на последовательное рассмотрение явлений в соответствии с разными уровнями иерархии и на проверку гипотез с помощью строгих выборочных процедур создает мощные инструменты познания физического мира и объединяет эти инструменты в систему гибкого, но строгого исследования сложных явлений.

Математическое моделирование осуществляется в три взаимосвязанные стадии:

1. Формализация изучаемого процесса - построение математической модели (составление математического описания);

2. Программирование решения задачи (алгоритмизация), обеспечивающего нахождение численных значений определяемых параметров;

3. Установление соответствия (адекватности) модели изучаемому процессу.

Построение математической модели:

В каждом конкретном случае математическую модель создают, исходя из целевой направленности процесса и задач исследования, с учетом требуемой точности решения и достоверности используемых исходных данных. При анализе полученных результатов возможно повторное обращение к модели с целью внесения коррективов после выполнения части расчетов.

Построение любой математической модели начинают с формализованного описания объекта моделирования. При этом аналитический аспект моделирования состоит в выражении смыслового описания объекта на языке математики в виде некоторой системы уравнений и функциональных соотношений между отдельными параметрами модели. Основным приемом построения математического описания изучаемого объекта является блочный принцип. Согласно этому принципу, после того как определен набор элементарных процессов, каждый из них исследуется по блокам в условиях, максимально приближенных к условиям эксплуатации объекта моделирования.

В результате каждому элементарному технологическому оператору ставиться в соответствие функциональный элементарный оператор с параметрами, достаточно близкими к истинным значениям.

Следующий этап моделирования состоит в агрегировании функциональных элементарных операторов в общий функциональный результирующий оператор, который и представляет математическую модель объекта. Важным фактором агрегирования является правильная взаимная координация отдельных операторов, которая не всегда возможна вследствие трудностей учета естественных причинно-следственных связей между отдельными элементарными процессами.

При выборе модели необходимо учитывать следующее:

- модель должна наиболее точно отражать характер потоков вещества и энергии при достаточно простом математическом описании;

- параметры модели могут быть определены экспериментальным или другим путем;

- в случае гетерогенных систем модели выбираются для каждой фазы в отдельности, причем для обеих фаз они могут быть одинаковыми или различными.

При построении математического описания используют уравнения таких видов:

- алгебраические уравнения;

- обыкновенные дифференциальные уравнения;

- дифференциальные уравнения в частных производных.

Алгоритмизация математических моделей:

После составления математического описания и выбора соответствующих начальных и граничных условий необходимо провести второй этап моделирования - довести задачу до логического конца, т. е. выбрать метод решения и составить программу (алгоритм).

В простейших случаях, когда возможно аналитическое решение системы уравнений математического описания, необходимость в специальной разработке моделирующего алгоритма, естественно, отпадает, так как вся информация может быть получена из соответствующих аналитических решений. Когда математическое описание представляет собой сложную систему конечных и дифференциальных уравнений, от возможности построения достаточно эффективного моделирующего алгоритма может существенно зависеть практическая применимость математической модели. В особенности это важно при использовании модели для решения задач, в которых она входит в качестве составной части более общего алгоритма, например, алгоритма оптимизации. Как правило, в таких случаях для реализации математической модели приходиться применять средства вычислительной техники; фактически без них нельзя ставить и решать сколько-нибудь сложные задачи математического моделирования и тем более задачи оптимизации, при решении которых расчеты по уравнениям математического описания обычно многократно повторяются.

Широко развитые в настоящее время методы численного анализа позволяют решать широкий круг задач математического моделирования.

Выбор численного метода:

При выборе метода для решения уравнений математического описания обычно ставиться задача обеспечения максимального быстродействия при минимуме занимаемой программой памяти. Естественно, при этом должна обеспечиваться заданная точность решения. Прежде чем выбрать тот или иной численный метод, необходимо проанализировать ограничения, связанные с его использованием, например, подвергнуть функцию или систему уравнений аналитическому исследованию, в результате которого выявиться возможность использования данного метода. При этом весьма часто исходная функция или система уравнений должна быть соответствующим образом преобразована с тем, чтобы можно было эффективно применить численный метод. Преобразованием или введением новых функциональных зависимостей часто удается значительно упростить задачу.

При выборе метода существенным моментом является размерность задачи. Некоторые методы эффективны при решении небольших задач, однако, с увеличением числа переменных объем вычислений настолько возрастает, что от них приходиться отказаться. Задачи такого класса обычно встречаются при решении систем уравнений, поиске оптимальных значений параметров многомерных функций. При соответствующем выборе метода можно уменьшить время, затрачиваемое на решение задачи и объем занимаемой машиной памяти.

Составление алгоритма решения:

Желательно составить четкое описание последовательности вычислительных и логических действий, обеспечивающих решение, т.е. составить алгоритм решения задачи. Основными требованиями к форме и содержанию записи алгоритма являются его наглядность, компактность и выразительность. В практике математического обеспечения вычислительных машин широкое распространение получил графический способ описания алгоритмов. Этот способ основан на представлении отдельных элементов алгоритма графическими символами, а всего алгоритма - в виде блок схемы. При этом набор графических символов не является произвольным, он регламентирован технической документацией по математическому обеспечению ЭВМ и соответствующими ГОСТами.

Методы оптимизации:

Оптимизация заключается в нахождении оптимума рассматриваемой функции или оптимальных условий проведения данного процесса. Для оценки оптимума необходимо прежде всего выбрать критерий оптимизации. В зависимости от конкретных условий в качестве критерия оптимизации можно взять технологический критерий, например максимальный съем продукции с единицы объема аппарата, экономический критерий - минимальную стоимость продукта при заданной производительности.

На основе выбранного критерия оптимизации составляется так называемая целевая функция, или функция выгоды, представляющая собой зависимость критерия оптимизации от параметров, влияющих на его значение. Задача оптимизации сводиться к нахождению экстремума (максимума или минимума) целевой функции.

Следует иметь в виду, что проблема оптимизации возникает в тех случаях, когда необходимо решать компромиссную задачу преимущественного улучшения двух или более количественных характеристик, различным образом влияющих на переменные процесса при условии их взаимной балансировки. Например, эффективность процесса балансируют с производительностью, качество - с количеством, запас единиц продукции - с их реализацией, производительность - с затратами.

Для автоматически управляемых процессов или систем различают две стадии оптимизации: статическую и динамическую.

Проблема создания и реализации оптимального стационарного режима процесса решает статическая оптимизация, создания и реализации системы оптимального управления процессом - динамическая оптимизация.

В зависимости от характера рассматриваемых математических моделей применяются различные математические методы оптимизации. Многие из них сводятся к нахождению минимума или максимума целевой функции. Линии, вдоль которых целевая функция сохраняет постоянное значение при изменении входящих в нее параметров, называются контурными или линиями уровня.

При выборе метода оптимизации необходимо учитывать возможные вычислительные трудности, обусловленные объемом вычислений, сложностью самого метода, размерностью самой задачи и т.п.

Целесообразно по возможности проводить предварительную оценку положения оптимума какой-либо конкретной задачи. Для этого необходимо рассмотреть исходные и основные соотношения между переменными. Для сокращения размерности задач часто используется прием выделения наиболее существенных переменных

Согласно принятой терминологии факторы x1, x2, ..., xn — это измеряемые и регулируемые входные переменные объекта (независимые переменные); помехи f1, f2, ..., fs — это не контролируемые, случайным образом изменяющиеся переменные объекта; выходные переменные y1, y2, ..., ym — это контролируемые переменные, которые определяются факторами и связаны с целью исследования. Часто в планируемом эксперименте у называют параметром оптимизации (технологический или экономический показатель процесса).

Факторы x1, x2, ..., xn иногда называют основными, поскольку они определяют условия эксперимента. Помехи f1, f2, ..., fs — как правило недоступны для измерения. Они проявляются лишь в том, что изменяют влияние факторов на выходные переменные. Объект исследования может иметь несколько выходных переменных. Опыт показывает, что в большинстве случаев удается ограничиться одним параметром оптимизации, и тогда вектор Y превращается в скаляр y.

Количество факторов и характер их взаимосвязей с выходной переменной определяют сложность объекта исследования. При наличии качественной статистической информации о факторах и зависящей от них выходной переменной можно построить математическую модель объекта исследования и функцию отклика y = f(x1, x2, ..., xn), связывающую параметр оптимизации с факторами, которые варьируются при проведении опытов.

Пространство с координатами x1, x2, ..., xn принято называть факторным, а графическое изображение функции отклика в факторном пространстве — поверхностью отклика.

При описании объектов, находящихся в стационарном состоянии, математическая модель чаще всего представляется полиномом:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.