скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Построение сети цифровой связи ОТС

, (9.1)

где Λкомплекс = λ i - интенсивность отказов комплекса;

λ i - интенсивность отказа i –го элемента.

Среднее время безотказной работы комплекса

.

К числу основных характеристик надежности восстанавливаемых элементов и систем относится коэффициент готовности. Коэффициент готовности КГ(t) - это вероятность работоспособности комплекса в момент времени t

 , (9.2)

где tВ - среднее время восстановления элемента (системы), ч.

Коэффициент готовности соответствует вероятности того, что элемент (система) будет работоспособен в любой момент времени.

9.2 Расчет вероятности безотказной работы комплекса «Обь -128Ц)

Средний сок службы до списания (полный) любого комплекса должен быть не менее 20 лет, с условием регламентируемой замены батарей аккумуляторных, входящих в состав комплекса, с периодичностью один раз в десять лет.

Каждая из составных частей комплекса (кроме кабелей и шкафа), должна иметь следующие показатели надежности:

- средняя наработка на отказ tср = 10000ч;

- средний срок службы до списания (полный) - не менее 20 лет;

- принятая продолжительность испытаний каждого объекта t = 2920 ч (выбираем исходя из того, что система эксплуатируется по 8 часов каждый день);

- максимальная продолжительность восстановлений tв = 100 мин;

- приемочное число невосстановлений Св = 0 (невосстановления не допускаются).

Интенсивность отказов комплекса Λком , будет равна

Λком .

При экспоненциальном законе распределения времени восстановления интенсивность восстановления µв

 (9.3)

где μВ - интенсивность восстановления;

tВ - среднее время восстановления элемента, tВ=1,66 c.

Подставив численные значения в формулу (9.3) находим интенсивность восстановления

с.

Вероятность безотказной работы в течение заданного промежутка времени находим по формуле (9.1)

Ркомплекс(t) = eΛком·t .

Подставив численные значения в формулу (9.1) находим вероятность безотказной работы в течение заданного промежутка времени

Ркомплекс(t) = e-0,29 = 0,75.

Вероятность отказа комплекса Q(t) находим по формуле

Q(t) = 1- P(t).

Подставив численные значения в формулу находим вероятность отказа комплекса

Q(t) = 1- 0,75 = 0,25.

Подставив полученные численные значения в формулу (9.2) находим коэффициент готовности комплекса

К Г .

Для обеспечения надежности работы аппаратуры ОТС необходимо чтобы коэффициент готовности составлял не менее 0,99. Это условие для комплекса «Обь -128Ц» выполняется.

Широкое внедрение цифровых систем передачи для ОТС, с использованием волоконно-оптического кабеля и возможность автоматического восстановления функционирования сети даже в случае отказа ее элементов, обеспечивают высокую надежность функционирования системы в целом.


10. Средства электрооборудования комплекса «Обь -128Ц»

10.1 Основные требования по электропитанию

Основные требования по электропитанию комплекса следующие:

 - входное напряжение переменного тока – 180 - 264В, 46 - 64Гц;

 - потребляемая мощность коммутационной станции NEAX 7400 при использовании:

а) 1PIM – 0,4 кB·A;

б) 2PIM – 0,8 кB·A;

в) 3PIM – 1,2 кB·A;

- потребляемая мощность конвертером ССПС-128 - 0,25 кВ·А.

Коммутационная станция NEAX 7400 поставляется в виде корпуса с установленным блоком питания PZ-PW121.

Блок питания рассчитан на работу при наличие в сети входного переменного напряжения 120 или 240 В, при частоте 50 или 60 Гц и в свою очередь вырабатывает следующие выходные напряжения:

 - 27В при токе 4,4 А;

 - 5В при токе 7,2 А;

 - 48В при токе 38 мА;

 - 90В при токе 80 мА.

В коммутационной станции NEAX 7400 комплекса «ОБЬ-128Ц» используются следующие виды модулей (электронных плат):

 - платы управления;

 - процессорные платы;

- линейные платы.

Конвертер представляет собой металлический корпус, в который установлены блоки питания типа:

- IBM AT 230W;

- NAL25-7605;

 - NAL25-7617.

Источник питания IBM AT 230W вырабатывает вторичное напряжение:

 - плюс 5В при токе 22А;

 - плюс 12В при токе7А.

Источник питания NAL25-7605 вырабатывает вторичное питание плюс 5V.

Источник питания NAL25-7617 вырабатывает вторичное питание плюс 48V .

Источник бесперебойного питания VICTRON 19'' NetPro являясь устройством типа ON-LINE, защищает оборудование от всех форм помех по электропитанию, включая полный перебой электропитания. Источник бесперебойного питания VICTRON 19'' NetPro содержит два модуля батарейных блоков IMV VICTRON 19” NetPro, а также снабжен автоматическим переключателем байпаса. Этот переключатель переключает нагрузку на питание от сети если источник бесперебойного питания не способен обеспечивать питание из-за перегрузки и перегрева.

Источник бесперебойного питания переключится на нормальную работу, когда ликвидируется перегрузка или температура упадет ниже уровня тревоги. Если перебой электропитания произойдет во время работы на байпасе, то источник бесперебойного питания переключится на питание от батарей, и, в свою очередь, когда батареи разрядятся, источник бесперебойного питания перестанет снабжать нагрузку энергией.

Работа источника бесперебойного питания NetPro 19” управляется с помощью кнопок и жидкокристаллического дисплея на передней панели. Кроме того, о состоянии источника бесперебойного питания сигнализируют четыре светодиода. Некоторые функции источника бесперебойного питания могут быть запрограммированы через коммуникационный порт RS - 232.

Источник бесперебойного питания может использоваться как преобразователь частоты, так как у источника входной частотный диапазон лежит в пределах 45-66Гц, то выходная частота может устанавливаться в пределах 50-60Гц. Если источник бесперебойного питания используется как преобразователь частоты, то функция перехода на байпас блокирована.

Принципиальная схема источника бесперебойного питания IMV VICTRON 19'' NetPro представлена на (рисунке 10.1)

Рисунок 10.1

Входной инвертор при наличие в сети входного переменного напряжения порядка 220 - 240В в зависимости от подключенной нагрузки вырабатывает следующие напряжения:

- при 100% нагрузке - 187 - 264В;

 - при 60% нагрузке - 160 - 264В;

- при 30% нагрузке - 125 - 264В.

Технические данные входного инвертора приведены в таблице 10.1

Таблица 10.1 - Технические данные входного инвертора

Наименование параметра Значение параметра
Входное напряжение, В 220 - 240
Максимальное переменное напряжение старта (при любой нагрузке),В 255
Минимальное переменное напряжение старта (при любой нагрузке),В 187
Диапазон входных частот, Гц 50 или 60 Гц ± 10%
Входной ток , А 6.6 -10

Технические данные выходного инвертора приведены в таблице 10.2

Таблица 10.2 - Технические данные выходного инвертора

Наименование параметра Значение параметра
Выходное напряжение ( по выбору), В 220/230/240
Стабильность выходного напряжения переменного тока +1%
Гармонические искажения 2%
Диапазон выходных частот, Гц 50 или 60 Гц ± 0,15%
Нагрузка выходных розеток, А 10

Модули батарейных блоков IMV VICTRON 19” NetPro, содержат девять аккумуляторных батарей. Каждая аккумуляторная батарея имеет емкость 7 А·ч и не требует обслуживания, так как является герметичной. Срок службы батарей лежит в пределах трёх или шести лет в зависимости от от рабочей температуры и числа циклов разряда. Номинальное напряжение, вырабатываемое аккумуляторными батареями составляет 108В. Поскольку «здоровье» батарей критично для функционирования источника бесперебойного питания, регулярно проводится быстрый автоматический тест батарей для проверки их безотказной работы.

Источники бесперебойного питания имеют множество параметров, из которых особенно существенны следующие:

- выходная мощность, измеряемая в вольт-амперах. Она должна быть не меньше, чем сумма мощностей, потребляемых устройствами, которые питаются от данного источника бесперебойного питания. При этом следует принимать во внимание не только среднюю потребляемую мощность, которая обычно указывается в паспорте или на задней стенке устройства, а еще и пиковую при включении;

- для любых классов источников бесперебойного питания существенно качество инвертора, определяющее форму выходного напряжения. В идеале она должна быть синусоидальной. Коэффициент гармоник выходного напряжения у лучших моделей не превышает 3%.

Если источник бесперебойного питания питает устройство от сети, напряжение в которой никогда не пропадает, это может привести к потере работоспособности батарей. Hо более совершенные модели имеют встроенные средства автоматического запуска тестовых и профилактических процедур, при которых нагрузка на некоторое время переключается на питание от батарей. Некоторые источники бесперебойного питания выполняют эту процедуру по команде от модуля программной поддержки, исполняемого на защищаемом компьютере. В этом случае источник бесперебойного питания должен соединяться с компьютером специальным интерфейсным кабелем.

10.2 Расчет гарантированного питания

Для расчета потребляемой аппаратурой мощности необходимо исходить из следующего:

- коммутационная станция NEAX 7400 потребляет мощность 400 Вт;

- конвертор ССПС – 128 потребляет 250 Вт;

- компьютер потребляет 300 Вт;

- мультиплексор SMS - 150C потребляет 105 Вт.

Потребляемая мощность аппаратурой комплекса «Обь -128Ц» Ро , Вт, определяется по следующей формуле

РО = РN + РC + РK + РS , (10.1)

где РN - мощность, потребляемая коммутационной станцией NEAX 7400;

РC - мощность, потребляемая конвертером ССПС - 128;

РK - мощность, потребляемая компьютером;

РS- мощность, потребляемая мультиплексором SMS -150C.

Подставив численные значения в формулу (10.1), находим мощность потребляемую аппаратурой комплекса

РО=400 + 250 + 300 + 105 = 1055 Вт.

Выходная мощность аккумуляторной батареи РАК , Вт·ч, определяется по формуле

РАК = U∙С, (10.2)

где U - номинальное напряжение одного модуля батареи, U =108 В;

С - номинальная емкость батареи, С = 7 А∙ч.

Подставив численные значения в формулу (10.2), находим выходную мощность шести модулей батарей

РАК = 6∙108·7=4536 Вт·ч.

Теперь время гарантированного питания ТГАР , ч, можно рассчитать по формуле

ТГАР = РАК / РО , (10.3)

где РАК - мощность двух модулей аккумуляторных батарей;

РО - мощность потребляемая аппаратурой комплекса «Обь -128Ц»

Подставив численные значения в формулу (10.3), находим время гарантированного питания аппаратуры комплекса «Обь -128Ц»


ТГАР = 4536/1055 = 4,3 ч.

Исходя из полученного расчета следует, что источник бесперебойного питания будет обеспечивать гарантированное питание в течении приблизительно 5 часов.


Заключение

В результате данной работы при помощи специализированных программ MATWORX и TERM разработан учебный методический пакет цифровой оперативно-технологической связи на базе аппаратуры «Обь -128Ц».

В первом разделе рассмотрен анализ принципов построения сети цифровой связи ОТС.

Далее рассмотрены структурные схемы организации сетей ОТС, а также системы резервирования и обеспечения готовности сети.

Во втором разделе произведен анализ структуры цифрового построения комплекса «Обь – 128Ц». Приведено обоснование комплекса «Обь – 128Ц», а также технические характеристики и работа комплекса.

Разработаны функции настройки, контроля и программирования конвертора ССПС – 128 и коммутационной станции NEAX7400, входящие в состав комплекса.

В третьем разделе данного проекта рассмотрены принципы построения цифровых групповых каналов.

В четвертом разделе проекта разработаны схемы организации цифрового канала.

В пятом разделе рассмотрена разработка программного обеспечения комплекса «Обь – 128Ц » с приведением функций настройки и контроля конвертера ССПС – 128, а также приведены способы программирования коммутационной станции NEAX 7400.

В шестом разделе приведена разработка алгоритмов программирования диспетчерских и промежуточных пунктов, а также организация управления системой при помощи терминала управления с использованием цифровых пультов.

В седьмом разделе проекта произведена оценка экономической эффективности организуемого учебного методического пакета на базе комплекса «Обь – 128Ц ».

В восьмом разделе разработаны мероприятия по охране труда и безопасности жизнедеятельности, а также приведен расчет освещенности в аудитории учебного центра.

В девятом разделе данного проекта приведен расчет надежности аппаратуры комплекса «Обь – 128Ц ».

Электропитание комплекса «Обь -128Ц приведено в десятом разделе, в котором также рассчитано гарантированное питание комплекса.


Список использованных источников

1. Волков, В.М. Технологическая телефонная связь на железнодорожном транспорте / В.М. Волков, А.П. Зорько, В.А. Прокофьев; отв. ред. и сост. В.М. Волков. – М.: Транспорт, 1990. – 294 с.

2. Горелов Г.В. Телекоммуникационные технологии на железнодорожном транспорте / Г.В. Горелов, В.А. Кудряшов, В.В. Шмытинский и др.; отв. ред. и сост. Г.В. Горелов. – М.: УМК МПС России, 1999. – 576 с.

3. Руководящий технический материал по проектированию цифровых и цифро-аналоговых сетей оперативно-технологической связи. РМТ - 1 ОТС - Ц – 2000: Утв. Зам. Министра путей сообщения России, 2000. – 50 с.

4. Инструкция по пользованию конвертером ССПС-128 и коммутационной станцией NEAX7400 ICS M100MX. – Черниголовка.: – ЭЗАН. – 217 с.

5. Лебединский А.К. Системы телефонной коммутации: учебник для техникумов и колледжей железнодорожного транспорта / А.К. Лебединский, А.А. Павловский, Ю.В. Юркан. – М.: Маршрут, 2003. – 496 с.

6. Осипова, Н.Г. Руководство по выполнению дипломного проектирования : метод. пособие / Н.Г. Осипова. – Хабаровск : Изд-во ДВГУПС, 2007. – 100 с.

7. Блиндер, И.Д. Цифровая оперативно – технологическая связь железнодорожного транспорта России : учебное иллюстрированное пособие/ И.Д. Блиндер. – М.: Маршрут, 2005. – 55 с.

8. Шайтанов, К.Л. Системы оперативно – технологической связи : метод. указания / К.Л. Шайтанов, Н.Г. Осипова. – Хабаровск : Изд-во ДВГУПС, 2008. – 23 с.

9. Мамота, Б.А. Безопасность жизнедеятельности. Примеры решения задач : учебное пособие. – В 2-х частях. – Ч.2 / отв. ред. и сост. Б.А. Мамота. – Хабаровск : Изд-во ДВГУПС, 2002. – 84 с.

10. Тесленко, И.М. Освещение производственных помещений: учебное пособие / И.М. Тесленко. – Хабаровск: Изд-во ДВГУПС, 2001. – 80 с.

11. Дружинин Г.В. Теория надежности радиоэлектронных систем в примерах и задачах / Г.В. Дружинин, С.В. Степанов, В.Л. Шихматова, Г.А. Ярыгин. – М.: Энергия, 1976. – 448 с.

12. Линденбаум М.Д. Надежность информационно-вычислительных систем: учебное пособие для студентов. – Ростов-на-Дону: Ростовский государственный университет путей сообщения, 1996. - 64 с.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.