скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Анализ динамики импорта и экспорта США

Regression / F-value – расчетное значение F-критерия.

В таблице «Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда»:

Observed – наблюдаемые значения (то есть уровни исходного динамического ряда);

Predicted – прогнозные значения (полученные по уравнению тренда для данных моментов времени);

Residuals – остатки (разница между фактическими и прогнозными значениями).

1 период:

1.1. Линейная функция

1.1.1. Импорт

Model is: v1=a0+a1*v3

Dependent variable: Импорт Independent variables: 1

Loss function: least squares

Final value: 2860,58754087

Proportion of variance accounted for:,96459517 R =,98213806

Рис. 12. Результаты расчета параметров линейной модели тренда


 

σ²ост = 357,6

Рис. 13. Результаты дисперсионного анализа линейной модели тренда

Рис. 14. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 15. Исходный динамический ряд и линейный тренд


1.1.2. Экспорт

Model is: v2=a0+a1*v3

Dependent variable: Экспорт Independent variables: 1

Loss function: least squares

Final value: 12239,2987404

Proportion of variance accounted for:,70518264 R =,83975153

Рис. 16. Результаты расчета параметров линейной модели тренда

σ²ост = 1529,9

Рис. 17. Результаты дисперсионного анализа линейной модели тренда


Рис. 18. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 19. Исходный динамический ряд и линейный тренд

2. Полином 2-ой степени

1.2.1. Импорт

Model is: v1=a0+a1*v3+a2*v4

Dependent variable: Импорт Independent variables: 2

Loss function: least squares

Final value: 2361,07651935

Proportion of variance accounted for:,9707775 R =,98528042


Рис. 20. Результаты расчета параметров линейной модели тренда

σ²ост = 337,3

Рис. 21. Результаты дисперсионного анализа линейной модели тренда

Рис. 22. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда


Рис. 23. Исходный динамический ряд и линейный тренд

1.2.2. Экспорт

Model is: v2=a0+a1*v3+a2*v4

Dependent variable: Экспорт Independent variables: 2

Loss function: least squares

Final value: 1182,47466764

Proportion of variance accounted for:,97151683 R =,98565553

Рис. 24. Результаты расчета параметров линейной модели тренда


 

σ²ост = 168,9

Рис. 25. Результаты дисперсионного анализа линейной модели тренда

Рис. 26. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 27. Исходный динамический ряд и линейный тренд


3. Полином 3-ей степени

1.3.1. Импорт

Model is: v1=a0+a1*v3+a2*v4+a3*v5

Dependent variable: Импорт Independent variables: 3

Loss function: least squares

Final value: 1622,93896749

Proportion of variance accounted for:,97991326 R =,98990568

Рис. 28. Результаты расчета параметров линейной модели тренда

σ²ост = 270,5

Рис. 29 Результаты дисперсионного анализа линейной модели тренда


Рис. 30. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 31Исходный динамический ряд и линейный тренд

1.3.2. Экспорт

Model is: v2=a0+a1*v3+a2*v4+a3*v5

Dependent variable: Экспорт Independent variables: 3

Loss function: least squares

Final value: 1128,49182351

Proportion of variance accounted for:,97281715 R =,98631494


Рис. 32. Результаты расчета параметров линейной модели тренда

 

σ²ост = 188,1

Рис. 33. Результаты дисперсионного анализа линейной модели тренда

Рис. 34. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда


Рис. 35. Исходный динамический ряд и линейный тренд

4. Экспоненциальная функция

1.4.1. Импорт

Model is: v1=exp(a0+a1*v3)

Dependent variable: Импорт Independent variables: 1

Loss function: least squares

Final value: 2505,82525018

Proportion of variance accounted for:,96898598 R =,98437086

Рис. 36. Результаты расчета параметров линейной модели тренда


 

σ²ост = 313,2

Рис. 37. Результаты дисперсионного анализа линейной модели тренда

Рис. 38. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис.39. Исходный динамический ряд и линейный тренд


1.4.2. Экспорт

Model is: v2=exp(a0+a1*v3)

Dependent variable: Экспорт Independent variables: 1

Loss function: least squares

Final value: 8979,74792643

Proportion of variance accounted for:,78369793 R =,88526715

Рис. 40. Результаты расчета параметров линейной модели тренда

 

σ²ост = 1122,5

Рис. 41. Результаты дисперсионного анализа линейной модели тренда


Рис. 42. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 43. Исходный динамический ряд и линейный тренд

2 период:

2.1. Линейная функция

2.1.1. Импорт

Model is: v1=a0+a1*v3

Dependent variable: Импорт Independent variables: 1

Loss function: least squares

Final value: 181742,7302782

Proportion of variance accounted for:,94787834 R =,97359044


Рис. 44. Результаты расчета параметров линейной модели тренда

σ²ост = 12116

Рис. 45. Результаты дисперсионного анализа линейной модели тренда

Рис. 46. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда


Рис. 47. Исходный динамический ряд и линейный тренд

2.1.2. Экспорт

Model is: v2=a0+a1*v3

Dependent variable: Экспорт Independent variables: 1

Loss function: least squares

Final value: 78822,35604611

Proportion of variance accounted for:,87764846 R =,93682894

 

Рис. 48. Результаты расчета параметров линейной модели тренда

σ²ост = 5255

Рис. 49. Результаты дисперсионного анализа линейной модели тренда


Рис. 50. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 51. Исходный динамический ряд и линейный тренд

2.2. Полином 2-ой степени

2.2.1. Импорт

Model is: v1=a0+a1*v3+a2*v4

Dependent variable: Импорт Independent variables: 2

Loss function: least squares

Final value: 77020,10493508

Proportion of variance accounted for:,97791155 R =,9888941


Рис. 52. Результаты расчета параметров линейной модели тренда

σ²ост = 5501

Рис. 53. Результаты дисперсионного анализа линейной модели тренда

Рис. 54. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда


Рис. 55. Исходный динамический ряд и линейный тренд

2.2.2. Экспорт

Model is: v2=a0+a1*v3+a2*v4

Dependent variable: Экспорт Independent variables: 2

Loss function: least squares

Final value: 67528,68878944

Proportion of variance accounted for:,89517899 R =,94613899

Рис. 56. Результаты расчета параметров линейной модели тренда


σ²ост = 4823

Рис.57. Результаты дисперсионного анализа линейной модели тренда

Рис. 58. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 59. Исходный динамический ряд и линейный тренд


2.3. Полином 3-ей степени

2.3.1. Импорт

Model is: v1=a0+a1*v3+a2*v4+a3*v5

Dependent variable: Импорт Independent variables: 3

Loss function: least squares

Final value: 53761,72516076

Proportion of variance accounted for:,98458178 R =,99226094

Рис. 60. Результаты расчета параметров линейной модели тренда

σ²ост = 4136

Рис. 61. Результаты дисперсионного анализа линейной модели тренда


Рис. 62. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 63. Исходный динамический ряд и линейный тренд

2.3.2. Экспорт

Model is: v2=a0+a1*v3+a2*v4+a3*v5

Dependent variable: Экспорт Independent variables: 3

Loss function: least squares

Final value: 28456,49743882

Proportion of variance accounted for:,95582857 R =,97766486


Рис. 64. Результаты расчета параметров линейной модели тренда

σ²ост = 2189

Рис. 65. Результаты дисперсионного анализа линейной модели тренда

Рис. 66. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда


Рис. 67. Исходный динамический ряд и линейный тренд

2.4. Экспоненциальная функция

2.4.1. Импорт

Model is: v1=Exp(ao+a1*v3)

Dependent variable: Импорт Independent variables: 1

Loss function: least squares

Final value: 66494,98911735

Proportion of variance accounted for:,98093003 R =,99041912

Рис. 68. Результаты расчета параметров линейной модели тренда


σ²ост = 4433

Рис. 69. Результаты дисперсионного анализа линейной модели тренда

Рис. 70. Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 71. Исходный динамический ряд и линейный тренд


2.4.2. Экспорт

Model is: v2=Exp(ao+a1*v3)

Dependent variable: Экспорт Independent variables: 1

Loss function: least squares

Final value: 65142,58593893

Proportion of variance accounted for:,8988828 R =,9480943

Рис. 72 Результаты расчета параметров линейной модели тренда

σ²ост = 4343

Рис. 73Результаты дисперсионного анализа линейной модели тренда


Рис. 74 Таблица наблюдаемых, прогнозных значений и остатков для линейной модели тренда

Рис. 75. Исходный динамический ряд и линейный тренд

На данном этапе предстоит провести сравнение полученных раннее данных и выявить наилучшую модель. Лучшей регрессионной моделью можно считать такую, которой соответствует максимальное значение коэффициента детерминации, а остаточная дисперсия минимальна.

Данные приведены по периодам в таблицах 7 – 10.

1 период

Импорт


Таблица 7

Модель Уравнение σ²ост

Линейная

357,6 ,96459517
Полином 2ой степени

337,3 ,9707775
Полином 3ей степени

270,5 ,97991326
Экспоненциальная

313,2 ,96898598

Экспорт

Таблица 8

Модель Уравнение σ²ост

Линейная

1529,9 ,70518264
Полином 2ой степени

168,9 ,97151683
Полином 3ей степени

188,1 ,97281715
Экспоненциальная

1122,5 ,78369793

2 период

Импорт

Таблица 9

Модель Уравнение σ²ост

Линейная

12116 ,94787834
Полином 2ой степени

5501 ,97791155
Полином 3ей степени

4136 ,98458178
Экспоненциальная

4433 ,98093003

Экспорт

Таблица 10

Модель Уравнение σ²ост

Линейная

5255 ,87764846
Полином 2ой степени

4823 ,89517899
Полином 3ей степени

2189 ,95582857
Экспоненциальная

4343 ,8988828

Из полученных данных следует, что «полином 3-ей степени» является для работы наилучшей формой тренда. Но также следует оценить и такие параметры, как F-критерий Фишера и t-статистику. Уравнение в целом по F-критерию Фишера значимо, если Fфакт > Fтеор. Изучая t-критерий, надо выбрать модель, где t-статистика по модулю превышает табличное значение.

По 1 и 2 периодам «полином 3-ей степени» является походящей формой тренда как по импорту, так и по экспорту, следовательно, уравнение в целом значимо.


Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.