скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Совершенствование эффективности переработки леса в России и за рубежом

Для получения смоляных и жирных кислот применяют метод экстрагирования бензином при 60-65 С0 с последующей отгонкой растворителя. Полученный продукт нейтрализуют 40 %-ной щелочью с добавлением воды до 40 % влажности. Он представляет собой бальзамическую пасту.

Водная суспензия хлорофиллина-сырца промывается водой до нейтральной реакции в промывных водах. Затем производится сушка продукта. Полученные хлорофиллиновые кислоты нейтрализуются карбонатом натрия (содой) в 20%-ном водном растворе этанола при температуре 75 С и соотношении растворитель: хлорофиллин натрия:сода равном 10:1: :0,5 в течение 15-20 мин [Репях, 1988].

При получении спиртового раствора хлорофиллина натрия спирт частично отгоняется до получения нужной концентрации продукта. При получении же водного раствора спирт отгоняется полностью и концентрат хлорофиллина натрия растворяется в воде. Полученные растворы поступают  в фасовочное отделение и

               

                                Рис. 6. Принципиальная схема переработки древесной зелени

                 по способу бензиновой экстракции

         разливаются в стеклянную тару.

Таким образом, учитывая использование обессмоленной древесной зелени, в настоящее время можно говорить   о создании безотходной технологии переработки этого сырья с получением целого ряда биологически активных продуктов. Однако все они представляют собой сложные, полностью не изученные смеси, что ограничивает их применение и, прежде всего, в фармакологии.

Выход хлорофилло-каротиновой пасты по описанной технологии переработки древесной зелени сосны из 1 т сырья при использовании для ее подготовки усовершенствованного измельчителя кормов "Волгарь-5" составляет 60-70 кг и 120-150 т тяжелого эфирного масла [Ягодин, 1988]. В среднем извлекается приблизительно 50-60 % смолистых веществ. Количество хлорофилловых пигментов в бензиновом экстракте составляет 20-30 %, а каротиноидов до 50 % от содержания их в исходном сырье. При дальнейшей переработке экстрактов древесной зелени сосны и ели получают  до 5 кг провитаминного концентрата, 5-5,5 кг бальзамической пасты, до 2 кг хвойного воска, а также 200-230 г хлорофиллина натрия.

В НПО "Силава" (Латвия) на основании данных о работе   цехов по переработке древесной зелени на базе типового оборудования с использованием нестандартных экстракторов разработан проект лесобиохимического цеха с получением хлорофилло-каротиновой пасты и тяжелого эфирного масла [Продниекс, 1988]. Ниже приведены технико-экономические показатели цеха.

Технико-экономические показатели цеха

Годовой выпуск товарной продукции, тыс.р. 123,95

Годовая потребность, т:

в сырье .....……………………………............    600

в бензине ............……………………………..     39

в едком натре   ........………………………...    2,82

Общая сумма капиталовложений, тыс.р.       101,27

Средняя прибыль, тыс.р. .....…………….....    47,52

Средняя рентабельность, %.…………........     62

Окупаемость капитальных вложений, год . .    2,54

Удельные капитальные затраты на 1 руб. товарной продукции, 81,7 коп.

 

Однако в проекте заложены заниженные данные по выходу продуктов из 1 т сырья: хлорофилло-каротиновой пасты-50 кг, тяжелого эфирного масла -95 г. Их выход составляет до 70 кг и 140 г соответственно. То есть   по выпуску товарной продукции данные занижены на 45 тыс.р. Денежный выход с 1 т продукции составит 281,7 р. [Левин, 1981; Репях, 1988]. Таким образом, цеха, получающие в качестве продуктов переработки древесной зелени только тяжелое эфирное масло и хлорофилло-каротиновую пасту уже оказываются высокорентабельными предприятиями. Нo неполнота извлечения экстрактивных веществ, а также высокая пожароопасность производства обусловили поиски новых растворителей для проведения процесса экстракции.

Внедрение в промышленные технологические схемы   в качестве экстрагента трихлорэтилена было осуществлено на основании исследований, проведенных на кафедре процессов и аппаратов Таллиннского политехнического института. Отмечено, что трихлорэтилен имеет наивысшую среди   хлорорганических растворителей стабильность в условиях экстракции, относительно низкую температуру кипения (87,0°С) и практически не растворима воде (0,1 %), что облегчает его регенерацию. Авторами была разработана   технология экстракции древесной зелени хвойных пород трихлорэтиленом в непрерывном процессе при обработке извлеченньк смолистых веществ триэтиламином. Эта технология была внедрена в химцехе Валгского лесхоза и Выруского леспромхоза (Эстония) и в химцехе Тетеревского опытного лесхоззага (Украина). Однако анализ работы этих предприятий показал, что, хотя трихлорэтилен и является трудногорючей жидкостью, пожароопасность которой на одну категорию ниже, чем у экстракционного бензина БР-1, он обладает повышенной токсичностью. Предельно допустимая концентрация его паров в воздухе рабочей зоны составляет 10 мг/м3, что очень трудно достижимо в промышленных  условиях. Возникают большие затруднения при очистке стоков. Кро ме того, при длительном хранении на свету трихлорэтилен постепенно окисляется кислородом воздуха до фосгена, а при соприкосновении с водой образует корродирующую  смесь. Поэтому этот способ не нашел широкого распространения, так же как и предложенная схема экстракции древесной зелени в винтовых аппаратах непрерывного действия.

К недостаткам рассмотренных схем относят прежде всего неполное извлечение и использование содержащихся  в древесной зелени веществ. При получении биологически активных веществ по технологической схеме с применением экстракции органическим растворителем в обессмоленной древесной зелени остаются неиспользованными водорастворимые вещества, а при водной экстракции - жирорастворимые. Резервом дальнейшего улучшения показателей является совершенствование технологии, а также комплексная переработка древесной зелени. Эффективность получения продуктов при комплексной переработке зависит в этом случае главным образом от выбора экономически обоснованного   направления использования сырья.

3.4.3. ПЕРСПЕКТИВНЫЕ ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ ПЕРЕРАБОТКИ ДРЕВЕСНОЙ ЗЕЛЕНИ

В настоящее время предложен целый ряд способов комплексной переработки древесной зелени методами последовательной экстракции водой и бензином. Однако двухстадийная экстракция исследованная как в периодическом, так и в непрерывном режиме не нашла применения в цехах по комплексной переработке древесной зелени. В НПО "Силава" был разработан экспериментальный проект завода с последовательной бензино—водной экстракцией. Из приведенных основных технике—экономических показателей следует, что экономическая эффективность производства при введении такой экстракции снижается [Левин, 1981; Репях, 1988]. Основные технико-экономические показатели производства:

Сумма товарной продукции, тыс.р. . . 123,90/184,09

Водный экстракт, т.………………….......     -/100

Хлорофилло-каротиновая паста, т ……..   30/30

Хвойный воск, кг............ 1800/1800

Эфирное масло, кг ...........   57/57

Потребность:

в сырье .........…………....  600/600

в технологическом паре . .. .. 1554/4140

в технологической воде, м3 . . . 18000/21400

Число работающих, чел. ........     16/30

Капитальные вложения, тыс.р. . . .. 101,0/214,8

Общая рентабельность, %.......     37/21

Срок окупаемости капитальных вложений, год.........   2,54/5,60

Примечание: Числитель - данные для бензиновой экстракции, знаменатель - для совмещенной.

Поэтому для широкого внедрения схемы комплексной переработки древесной зелени необходимо интенсифицировать процесс экстрагирования или получать на основе хвойно—водного экстракта, который в 5 раз дешевле хлорофилло-каро-тиновой пасты, продукты с высокой потребительной  стоимостью.

В настоящее время разработан способ совмещенной водно-бензиновой   экстракции биологически активных веществ из древесной зелени по дифлегмационному методу, который позволяет увеличить выход биологически активных веществ на 15 % и сократить продолжительность процесса экстракции более чем в 2 раза по сравнению с последовательными экстракциями. Полученные экстракты при этом перерабатываются раздельно.

Из одной тонны древесной зелени сосны по безотходной технологии можно получить 210-230 хлорофиллина натрия, 4,4-4,6 кг провитаминного концентрата, 4,5-4,7 кг бальзамической пасты, 1,8-2,0 кг воска, 70-90 кг водного лечебного экстракта, 450-470 кг хвойной витаминной муки на сумму 1250-1360 р. в зависимости от выхода продуктов [Ягодин, 1988].

Для увеличения выхода экстрактивных соединений  при использовании двухстадийной экстракции предлагалось также использовать анионные поверхностно-активные вещества (алкилсульфанаг натрия), добавление которых в количестве 0,1 % от экстрагента (воды) позволяет существенно увеличить выход биологически активных веществ.

Анализ водного экстракта древесной зелени, получаемого по существующим технологиям, показал значительное содержание в нем витаминов, Сахаров, органических кислот, фенольных соединений и минеральньк компонентов. Это дало возможность использовать водные экстракты как сырье для ферментативной переработки.

Кроме того, значительное содержание в древесной зелени протеина (8-14 % в хвое сосны) и его высокая кормовая ценность вследствие нахождения в нем дефицитных аминокислот, и прежде всего лизина, позволили разработать   и предложить для реализации ряд технологических схем по выделению белково-витаминных концентратов холодной водой с добавками неорганических веществ.

              

рис. 7. Принципиальная схема комплексной переработки древесной зелени с получением БВК

Технологическая схема, позволяющая получить наряду с водорастворимыми и жирорастворимыми биологически   активными веществами еще и белково-витаминный концентрат, приведена на рис. 7. По предложенной схеме из 1 т абс. сух. сырья могут быть получены белково-витаминный концентрат - 80-90 кг, хло-рофилло-каротиновой пасты - 50, хлорофиллина натрия  -40 г, хвойного воска - 6-7 кг, ТЭМ - 250 г, хвойного лечебного экстракта - 170-200 кг, кормовых дрожжей -60—70 кг, а также углеводного корма до 500 кг, который по содержанию протеина на основании ГОСТ   200083-74 можно отнести ко 2 группе. Наибольшее влияние на выход протеина оказывают добавки щелочи до концентрации 0,3 %.

Подобные схемы, несмотря на глубокий и дифференцированный подход к проблеме переработки древесной зелени, не нашли промышленного применения. Прежде всего это связано с большими энергетическими и временными затратами на ступенчатое использование различных растворителей при последующей их регенерации. Качество же получаемых белково-витаминных концентратов в значительной мере снижается из-за примесей соединений, переходящих в водный раствор - горечей, дубителей и т.д., освобождение от которых пока не отработано.

Американские ученые осуществляли экстракцию из древесной зелени путем ее измельчения в воде (1:4 по весу). Экстракт отделяли фильтрованием через ткань,   а затем центрифугировали. Выделяемый после центрифугирования осадок лиофильно высушивали, получая пастообразный хлорофилло-каротиновый продукт, а надосадочную жидкость использовали для получения белка, который осаждали ацетоном в течение 5 ч. При этом осаждалось до 95 % белка. Выход белка и пасты составил соответственно 2,5 и 12 %. Такой способ считается экономически эффективным, если область заготовки сырья и сбыта продукции не будет превышать 60 км от места переработки. Расчет при этом делается, главным образом, на породы с более высоким, чем в сосне, содержании протеина. Кроме того, наряду с высокой его кормовой ценностью, сравнимой с кормами животного происхождения, также отмечается снижение   качества продукта из-за наличия сопутствующих соединений.

Сотрудниками СибТИ предложена технология получения концентратов фосфолипидов (рис. 8). Эти соединения играют важную роль в образовании мембранных внутриклеточных структур и обладают высокой биологической активностью.

Рис. 8. Принципиальная схема получения фосфолипидов

Содержание фосфолипидов в осенне-зимний период достигает 1,2—1,8 % от древесной зелени, поэтому выделение их из более дешевого, чем используемого сейчас для этих целей (семена масленичных культур, яичный желток, сердце крупного рогатого скота), сырья целесообразно. Поскольку технология предусматривает выделение продуктов в "мягких" температурных режимах (0-20 °С), вещества извлекаются практически не деструктированными и отличаются высоким качеством. Однако в литературе еще нет данных  о промышленной апробации этой схемы.

В литературе также описан способ получения витамина Е из фитола нейтральных соединений древесной зелени   при конденсации с триметилгидрохиноном в среде пропанола   и хлоридом цинка (3 %) и фторидом бора (0,002 %) в  качестве катализаторов при температуре 150—170 С. Однако также нет данных о практическом применении этого  способа.

Сотрудниками ЛТА им. С.М. Кирова с учетом исследований состава экстрактивных веществ древесной зелени сосны обыкновенной и данных по биологической активности   и свойствам отдельных соединений экстракта создана техно-

Рис. 9. Принципиальная схема переработки экстрактивных веществ древесной зелени сосны обыкновенной

логия,  позволяющая выделить концентраты соединений, обладающих наиболее ценными свойствами (рис. 9). В настоящее время эта технология проходит опытно—промышленные испытания.  

Кроме горячей воды, бензина и трихлорэтилена, заложенных в качестве экстрагентов в существующие технологические схемы получения биологически активных веществ из древесной зелени, исследователями изучалось применение для этой цепи еще целого ряда органических и неорганических веществ. Установлено, что экстрагирующая способность дихлорметана, ацетона, изопропанола, трихлорэтилена, этил-ацетата и спиртобензольной смеси в 1,5-2,5 раза выше, чем у бензина. Однако из-за своей повышенной растворимости в воде и токсичности эти экстрагенты не нашли применения в существующих технологических схемах.

Показана возможность использования для экстракции древесной зелени жидкого диоксида углерода. В углекислотном экстракте установлено наличие эфирного масла   (2% от экстракта), хлорофилла, каротиноидов, витаминов С, Р и Е, провитамина Д, а также воска, кислот, липидов и других веществ. Благодаря наличию этих компонентов   экстракты обладают высоким биогенностимулирующим действием.

К недостаткам этого метода относятся значительные затраты на производство экстрагента при больших потерях его в процессе экстракции (20-50 % от емкости экстрактора), а также высокое давление в экстракторах и вследствие этого необходимость изготовления специального   оборудования. Технология экстракции жидким диоксидом углерода эффективна только в случае непосредственного применения получаемого экстракта. Соединения, входящие в его состав, из-за низких температур проведения процесса практически не претерпевают никаких изменений. В случае же дальнейшей переработки экстракта с использованием процессор, связанных с жесткими температурными режимами, применение диоксида углерода в качестве экстрагента теряет смысл. Тем не менее экологическая нейтральность и пожаробезопасность процесса наряду с низкой температурой экстрагирования позволяют предположить широкое распространение технологических схем, основанных на использовании диоксида углерода в качестве экстрагента древесной зелени.

Проводилось изучение и процессов экстрагирования древесной зелени стандартной смесью хладонов 11 и 12(1:1) по МРТУ 6-02-395-66. Содержание летучих веществ   в экстракте составило 27,9 % от экстракта. Применение смеси хладонов в качестве экстрагентов позволяет, по мнению авторов, получить экстракты, которые можно вводить в парфюмерную продукцию, выпускаемую в аэрозольной упаковке. Оцнако, опасность применения хладонов, связанная с разрушением ими озонового слоя земли, делает использование этих экстрагентов в промышленном масштабе маловероятным.

3.5. ЗНАЧЕНИЕ ЗАЩИТЫ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПЕРЕРАБОТКЕ ЛЕСА

Основными лесозаготовительными районами Российской Федерации оста­ются Иркутская область, Красноярский и Хабаровский края, Тюменская и Архан­гельская области. Леса европейской части страны, наиболее доступные для эф­фективного использования и подвергавшиеся вследствие этого усиленной экс­плуатации, в настоящее время почти полностью вовлечены в хозяйственный обо­рот и в значительной мере истощены. Перемещение лесозаготовок в слабоосвоен­ные районы, удаленные от сложившихся центров промышленной переработки и потребления древесины, сопровождается постоянно увеличивающимися затра­тами на заготовку и вывоз древесины, требуют крупных капитальных вложений в развитие производственной и социальной инфраструктуры.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.