скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: История развития атомной энергетики

1.     открытие нейтрона;

2.     обнаружение позитрона К. Андерсоном в космических лучах. Это была первая открытая учеными ан­тичастица;

3.     открытие американским хими­ком Г. Юри вместе с Ф. Брикведце и Г. Мерфи дейтерия – тяжелого водо­рода, стабильного изотопа водорода с массовым числом 2. При создании первой американской бомбы Юри руководил производством тяжелой воды (с дейтерием) и участвовал в работах по разделению изотопов ура­на.

Хотя мы и называем 1932 год годом великих открытий, но роль этих замечательных открытий в раз­витии науки была определена го­раздо позднее. Тогда за ними лишь следовали события, которые слу­жили как бы продолжением этих открытий.

Первым наиболее выдающимся открытием, совершенным после того, как Чедвик доказал существование нейтрона, было открытие Ирен и Фредериком Жолио-Кюри в 1934 г. искусственной радиоактивности. В этом могли видеть некоторую закономерность. Ведь Жолио-Кюри сде­лали важный шаг к открытию ней­трона, и естественно, что они про­должали опыты по исследованию нейтрона. Для этого у них в лабора­тории било все приспособлено. Они имели источники альфа-излучения и опыт работы в молодой тогда области физики элементарных частиц. Их работы показали, что при облучении альфа-частицами легких элементов некоторые из них испускали наряду с нейтронами и позитроны.

И. и Ф. Жолио-Кюри предпол­ожили, что натолкнулись на какое-то совершенно новое явление, нигде ранее не упоминавшееся, а именно – позитронное излучение. В своих опы­тах они бомбардировали алюминий альфа-частицами большой скорости, а затем постепенно удаляли источ­ник альфа-частиц, но алюминиевый листок продолжал излучать положи­тельные электроны, т. е. позитроны, в течение достаточно продолжитель­ного времени. Так была открыта ис­кусственная радиоактивность (тер­мин родился в Париже, где почти за 40 лет до этого появился термин «радиоактивность»).

Искусственную радиоактивность открыли в 1933 г., а в 1935 г. Ф. Жо­лио-Кюри в своем Нобелевском до­кладе сказал: «Мы видим, что не­сколько сотен различного рода ато­мов, составляющих нашу планету, не являются раз и навсегда созданными и существуют не вечно. Мы воспри­нимаем это именно так потому, что некоторые существуют еще и сейчас. Другие же, менее устойчивые атомы уже исчезли. Из этих последних некоторые, вероятно, будут вновь получены в лабораториях. До настоя­щего времени удалось получить лишь элементы с небольшой продолжи­тельностью жизни - от доли секунды до нескольких месяцев. Чтобы полу­чить достойные упоминания количества элементов со значительно большой продолжительностью жиз­ни, необходимо располагать очень мощным источником излучений».

Ныне в США, России, Европе и других странах появились очень мощ­ные источники излучений в виде ус­корителей протонов и электронов на гигантские энергии.

Дж. Кокрофт (1897-1967), ан­глийский физик, в 1932 г. вместе с Э. Уолтоном создал высоковольтный генератор, работающий по принципу умножения напряжения. Ускоряя ионы до больших скоростей, они сумели в первой половине 1932 г. ускоренными протонами осуществить ядерную реакцию, облучая литиевую мишень, и расщепили ядра атомов лития. Здесь уместно добавить, что в Советском Союзе, в Харьковском физико-техническом   институте, ученые-физики К. Д. Синельников, А. К. Вальтер, А. И. Лейпунский и Г. Д. Латышев повторили к ноябрю 1932 г. эксперимент на каскадном генераторе, созданном харьковчана­ми, и расщепили ядро лития. Это сообщение произвело на Западе фу­рор, так как никто не мог ожидать, что в далеком Харькове есть такие кадры физиков и возможности со­здать каскадный генератор в корот­кие сроки.

Вскоре после открытия нейтрона возникли гипотезы о строении ядра. В дискуссии включились физики-тео­ретики, и в их числе Д. Д. Иваненко. В 1932 г. он высказал гипотезу о про­тон-нейтронном составе ядер. Эта модель не сразу была принята, и, в частности, теоретик В. Гейзенберг провел большую работу, участвуя в дискуссиях по структуре атомного ядра: он развил идею обменного характера взаимодействий нуклонов в ядре.

Итальянский физик Э. Ферми (1901-1954), в 1938 г. эмигрировав­ший из фашистской Италии в США, внес большой вклад в развитие со­временной теоретической и экспериментальной физики. Он заложил основы нейтронной физики, впер­вые наблюдал искусственную радио­активность, вызванную бомбардиров­ками нейтронами ряда элементов, в том числе урана, создал теорию этого явления. Позднее, а именно в декаб­ре 1942 г., Ферми первому в мире удалось осуществить управляемую цепную реакцию в построенном им в США первом в мире ядерном реак­торе.

В 1934 г. Э. Ферми пытался с помощью бомбардировки нейтрона­ми элемента урана получить заурановые элементы, не существующие в природе. В результате бомбардиров­ки наблюдалось образование ряда радиоактивных веществ. Химичес­кие исследования показали, что эти вещества являлись изотопами из­вестных элементов периодической системы. Наблюдаемое им впервые в истории физики деление ядер урана не было правильно понято. Ферми предположил, что ядро урана, захватив нейтрон, становится бета-радиоактивным и после испускания бета-частицы превращается в ядро нового трансуранового элемента.

Эта работа Ферми и посвященные тем же проблемам работы его друга Э. Сегре привлекли широкое внима­ние ученых к возможности деления ядер урана. В конце 1934 г. извест­ный физико-химик Ида Ноддак вы­ступила в техническом журнале с общим тезисом о том, что с научной точки зрения недопустимо говорить о новых элементах, не установив, что при облучении урана нейтронами не возникают какие-либо известные химические элементы: «Допустимо, что при бомбардировке тяжелых ядер нейтронами эти ядра распадаются на несколько больших осколков, кото­рые являются изотопами известных элементов, хотя и не соседних с об­лученными».

«Читая сегодня эту фразу, мы ви­дим в ней ясное предсказание воз­можности деления ядер» (это выска­зывание принадлежит В. Герлаху, известному немецкому физику). Но в 1934 г. на эту мысль Иды Ноддак не обратили внимания, ее пророчество повисло в воздухе, и только после опубликования работ по делению ядер О. Ганом и Ф. Штрассманном в 1939 г. И. Ноддак попыталась при­своить себе честь открытия деления ядер урана. Но ученые с этим не согласились, так как Ган и Штрассманн осуществили деление ядер урана медленными нейтронами.

Атомистика в предвоенные годы.

Этот период был полон ожиданий новых открытий в ядерной физике.

В начале нашего столетия очень немногие верили в решение «атом­ной проблемы». В первые годы XX в. в университетских учебниках физи­ки было написано «атомная гипоте­за», даже не теория. Более того, лю­дей, веривших в нее, высмеивали, их исследования не поддерживали. Слишком уж многое было неясно. И только ученые – физики и химики, дерзкая мысль которых проникла в строение атома, понимали, какие глубины и тайны таит в себе природа микромира.

Виднейшие ученые-физики, очень многое сделавшие для проникнове­ния внутрь атома и его ядра, хорошо осознавали, какая бездна трудностей ждет их на пути овладения тайнами строения ядра. В 1933 г. в своем письме Британской ассоциации Э. Резерфорд заявил: «...эти превращения атомов представляют исключитель­ный интерес для ученых, но мы не сможем управлять ядерной энергией в такой степени, чтобы это имело какую-нибудь коммерческую цен­ность. И я считаю, что вряд ли мы когда-нибудь будем способны это сде­лать. Наш интерес к этой проблеме – чисто научный».

Резерфорд интуитивно понимал, каких огромных усилий, в том числе и материальных, может потребовать управление ядерной энергией. Ему было ясно, что только военные на­добности могут заставить государст­во освоить ядерную энергию, а это­го, хотелось бы верить, опасался ве­ликий ученый. Последние фразы есть, конечно, домысел авторов. К сожалению, на алтарь войны часто приносились в жертву гениальные научные открытия, величайшие на­учные достижения.

В 1938 г. И. Кюри вместе с П. Савичем установила, что при по­падании нейтронов в ядро урана пос­леднее разделяется и получается элемент, обладающий свойствами лантана, а не трансуранового эле­мента, как предполагал в 1934г. Э. Ферми, бомбардируя уран. По существу Ферми и И. Кюри были в своих опытах очень близки к откры­тию деления ядер урана, к сенсации в физике, к установлению факта, что существуют ядерные реакции, при которых ядро «раскалывается» на два приблизительно равных по массе ос­колка. Кстати, А. фон Гроссе пытал­ся доказать, что в опыте Ферми из урана образуется изотоп предшес­твующего атома – протактиния. Од­нако Э. Ферми образование протак­тиния решительно отвергал и был прав.

Физики-ядерщики, теоретики и экспериментаторы, в 1937-1938 гг. были в некоем ажиотаже, в состоя­нии ожидания скорой сенсации в ядерной физике. Кстати, в эти годы и в жизни народов происходили круп­ные события. Гитлеровская Германия набирала силу. В марте 1938 г. Германия захватила всю Австрию. На Мюнхенской конференции в сен­тябре 1938 г. главами Великобри­тании (Н. Чемберлен), Франции (Э. Даладье), Италии (Б. Муссолини) и Германии (А. Гитлер) было подпи­сано соглашение о передаче Герма­нии Судетской области Чехослова­кии (со всеми сооружениями, укреп­лениями, фабриками, заводами, за­пасами сырья, путями сообщения и пр.). Это соглашение можно рас­сматривать как «умиротворение» Гер­мании за счет стран Центральной и Юго-Восточной Европы.

Многое ученые, подвергшись го­нениям со стороны гитлеровского режима, были вынуждены эмигриро­вать из Германии и искать убежища во Франции, Англии, США и других странах. Это были годы настойчивых попыток овладеть ядерной энергией; сознавая перспективность этого но­вого источника энергии, ученые упор­но продвигались к цели. И успех был достигнут в конце декабря 1938 г.

На какой-то стадии в дискуссии по опытам Э. Ферми и И. Жолио-Кюри включились О. Ган, Л. Мейтнер и Ф. Штрассманн из Германии. У них был большой опыт в области радиохимии, и поэтому они посчита­ли необходимым разобраться в таком важном и сложном вопросе, как со­здание новых химических элемен­тов. Новые элементы Ферми напом­нили им об уране-2, открытом О. Гамом в 1923 г. и оказавшемся изотопом протактиния. Это исклю­чало протактиниевую гипотезу Гроссе.

Началась погоня за трансурано­выми элементами, которые, как было доказано впоследствии, не могли ими оказаться.

С большим трудом и постепенно Ган, Мейтнер и Штрассманн уточ­няли и расширяли представления о последствиях облучения урана и то­рия нейтронами. (В Германии, в Далемском институте, источники ней­тронов обладали слабой интенсив­ностью, и потому, следя за ходом опытов, Ган, Мейтнер и Штрассманн тратили много времени, сменяя друг друга каждые восемь часов.) Работа И. Кюри и Савича в Париже подтвердила, что при воздействии мед­ленных нейтронов на уран возникает не протактиний, а элемент, напоми­нающий лантан, т. е. элемент с по­рядковым номером, гораздо мень­шим номера урана. Но это утвержде­ние не было ими распространено в среде физиков.

Работы И. Кюри и Савича послу­жили поводом для Гана и Штрассманна (Л. Мейтнер вынуждена была покинуть Берлин в июле 1938 г.) еще раз исследовать химическую природу бета-излучателей» возникающих в уран-нейтронных реакциях. Они вы­явили, что в осадок выпал и барий. Развитие этих событий запечатлено в обширной переписке между тремя главными участниками – О. Ганом, Л. Мейтнер и О. Фришем (племянником Мейтнер). Эти частные пись­ма запечатлели историю открытия деления ядер урана медленными нейтронами. Вот одно из писем Гана в Стокгольм, Л. Мейтнер: «Вечер, понедельник, 19 декабря 1938г. Весь день я и неутомимый Штрассманн при поддержке ассистенток Либер и Боне работали с продуктами урана. Сейчас 11 часов вечера, в 12.00 вер­нется Штрассманн, и я смогу пойти домой...» После рассказа о ходе экс­перимента он пишет: «Через пару дней я вновь напишу тебе о результа­тах. Сердечный привет твоему Отто». Л. Мейтнер ответила 21 декабря: «Ваши результаты ошеломляют. Про­цесс, идущий на медленных нейтро­нах и приводящий к барию...»

21 декабря О. Ган пишет Л. Мей­тнер: «Активированный барий не превращается в излучающий лан­тан...»

22 декабря 1938 г. в редакцию журнала «Naturwissenschaft» поступи­ла работа О. Гана и Ф. Штрассманиа «О доказательстве существования и свойствах щелочноземельных метал­лов, возникающих при облучении урана нейтронами». В статье было написано об образовании ядер ба­рия.

Несколько позже Л. Мейтнер и О. Фриш показали, что ядра урана-235 делятся под действием медлен­ных нейтронов на два осколка. Они ввели термин «деление ядер».

Деление тяжелого ядра (урана) сопровождается выделением энергии осколков порядка 200 МэВ. В после­дующем было установлено, что при бомбардировке урана медленными нейтронами число нейтронов на один акт деления составляет 2,5. Для более тяжелых элементов число нейтронов несколько увеличивается, именно это обстоятельство позволяет осущест­влять цепную ядерную реакцию.

28 января 1939 г. в «Naturwissenschaft» была направлена вторая, бо­лее обстоятельная статья О. Гана и Ф. Штрассманна «Доказательство возникновения активных изотопов бария из урана и тория при облуче­нии их нейтронами». Сразу же после-публикации в январе 1939 г. статьи Гана и Штрассманна о делении ура­на в ряде лабораторий опыты с рас­щеплением ядер были повторены и дали подтверждение результатов ра­бот О. Гана и Ф. Штрассманна.

В Принстоне (США) Н. Бор и А. Уилер приступили к разработке теории деления ядра (как капли). В их статье была ссылка на работы Я. И. Френкеля (из ЛФТИ), который независимо от Бора и Уилера пос­троил теорию деления. Капельной моделью ядра занимался и извест­ный ленинградский физик-теоретик (эмигрировавший из СССР) Г. Гамов.

Ныне, когда прошло уже много лет с того времени, как был открыт процесс деления ядер атомов, можно с уверенностью сказать, что это было одно из тех редких открытий, кото­рое оказало значительное влияние на жизнь всего человечества. Качественно процесс деления был объяснен учеными сразу трех стран: Бором (Дания), Уилером (США) и Френкелем (СССР). Деление ядер происходит при определенном соот­ношении кудоновских сил отталки­вания, которые стремятся разорвать тяжелое ядро (урана), и сил поверх­ностного натяжения, которые это­му препятствуют. Основной величи­ной в этой модели являлся так назы­ваемый порог деления, который, как предполагалось, определялся только этими противоборствующими сила­ми.

В советских научных центрах, и прежде всего связанных с ядерной физикой, интерес к радиохимичес­ким исследованиям ядра атома вспых­нул с новой силой после сообщений об открытии деления ядер урана в Германии в начале 1939 г. Уже первая информация о теории процесса поз­воляла сделать фантастические вы­воды: новая форма ядерной реакции высвобождает огромное количество энергии.

Внеочередное заседание так на­зываемого «ядерного семинара», регулярно проводимого в ЛФТИ И. В. Курчатовым, привлекло внима­ние не только сотрудников Физтеха, но и ученых из других организаций, в том числе из Института химичес­кой физики: Н. Н. Семенова, Ю. Б. Харитона, Я. Б. Зельдовича и др.

На семинаре было высказано пред­положение, что при бомбардиров­ке урана нейтронами возникают не только крупные осколки, но и сво­бодные нейтроны. Ю. Б. Харитон и Я. Б. Зельдович развили мысль, что свободные нейтроны могут быть захвачены соседними урановыми ядрами и реакция станет нарастать лавиной, т.е. по принципу цеп­ной реакции, а это взрыв! В том же 1939 г. Ю. Б. Харитон и Я. Б. Зельдович показали возможность осу­ществления цепной реакции деле­ния ядер урана-235.

Впечатляющие исследования, свя­занные с проблемой атома, проводи­лись в РИАН. РИАН ставил задачей изучение явлений природной и ис­кусственной радиоактивности. Запу­щенный в те далекие годы первый в СССР и Европе циклотрон на энергию 4 МэВ позволил получить ре­зультаты по взаимодействию ней­тронов почти со всеми элементами периодической системы. С помощью циклотрона были сформированы нейтронные пучки высокой интен­сивности. Среди продуктов деления В. Хлопиным, М. Пасвик и Н. Во­лковым весной 1939 г. были обна­ружены радиоактивные изотопы брома, теллура и сурьмы.

И. В. Курчатов, работая над про­блемой ядра атома, отлично созна­вал, что сооружаемый в РИАН цик­лотрон является идеальной установ­кой для получения интенсивных по­токов нейтронов. Вложив много тру­да и изобретательности, Курчатов ускорил ввод этой установки и вмес­те с Мысовским, создателем циклот­рона, получил много интересных результатов. Но И. В. Курчатов хоро­шо понимал, что нужен циклотрон на еще большие энергии, и получил согласие на сооружение к 1 января 1942 г. циклотрона на 12 МэВ в специально построенном для него новом здании ЛФТИ. Однако его запуску помешала война, и он был введен в эксплуатацию уже после войны, в 1949 г.

В ЛФТИ были получены сообще­ния, что сотрудник Калифорнийско­го университета У. Либби пытался наблюдать вылет вторичных ней­тронов в процессе спонтанного деления ядер урана, но потерпел неуда­чу. Чувствительность его метода была такой, что он мог бы обнару­жить спонтанное деление, если бы период полураспада не превосходил 1014 лет. Поручив решить эту задачу своим ученикам Г. Н. Флерову и К. А. Петржаку, Курчатов возглавил работу в целом. После длительных и упорных исследований он понял, что надо избавиться от окружающего фона путем защиты эксперименталь­ной установки, камеры, толстым сло­ем вещества. Самое простое, что при­шло ему в голову, – это погрузиться с аппаратурой на подводной лодке в глубины моря. Но оказалось, что вблизи Ленинграда Балтийское море мелкое – 20-30 м. Такого слоя во­ды было явно недостаточно для эф­фективной защиты от проникающе­го космического излучения. Тогда Курчатов договорился с руководст­вом Московского метрополитена о том, чтобы ему разрешили провести этот эксперимент на одной из глубокозаложенных шахт станции мет­ро. Получив согласие, Курчатов от­командировал своих сотрудников Г. Н. Флерова и К. А. Петржака в Москву.

Аппаратуру они разместили на станции метро «Динамо». По ночам, когда движение поездов метро пре­кращалось, на глубине 60 м Флеров и Петржак проводили свои измерения. Эффект получился постоянный, без помех. Через месяц работы Курчатов пришел к заключению, что вся сово­купность экспериментальных данных служит бесспорным доказательством существования нового вида радиоактивности – спонтанного, самопро­извольного деления урана. Курчатов потребовал, чтобы Флеров и Петржак подготовили сообщение об этом открытии для опубликования в печа­ти. Короткое сообщение А. Ф. Иоф­фе направил по трансатлантическо­му кабелю – каблограммой – в аме­риканский журнал «Physical Review», и в июне 1940 г. она была опублико­вана.

По мнению Флерова и Петржака, под этим сообщением должна была стоять также и подпись Курчатова, но он отказался его подписывать, так как, по его выражению, не хотел «затенять» своих учеников.

Дни и месяцы предвоенного 1940 г. неуклонно вели ученых к высвобождению внутриядерной энергии, скрытой в недрах атомов. Приближе­ние этого волнующего события чув­ствовал каждый, кто стремился уско­рить его осуществление.

В печати, не только научной, все чаще появлялись сообщения о ско­ром появлении нового, невиданного никогда ранее источника энергии. 26 июня 1940 г. в газете «Известия» сообщалось в одной из статей: «В последнее время советскими и зарубежными физиками установлено, что деление ядер урана происходит толь­ко под действием медленных нейтро­нов. Это дает возможность регулиро­вать процесс деления атомов урана и тем самым использовать огромное количество внутриатомной энергии.

По приблизительным подсчетам одна весовая единица урана может дать в два с лишним миллиона раз больше энергии, чем такое же коли­чество угля. Уран, таким образом, становится драгоценным источником энергии...» А через полгода, 31 декабря 1940г., в той же газете «Известия» в статье «Уран-235» говорилось о новом ис­точнике энергии, в миллионы раз превосходящем все до того сущест­вовавшие. В этой статье рассказыва­лось: «При бомбардировке нейтро­нами ядер металла урана происходит необыкновенное явление: из каждо­го разбитого ядра вылетают новые нейтроны. Они попадают, в свою очередь, в ядра урана, расщепляют их и вновь рождают нейтроны. Про­цесс идет как лавина. Он идет сам... Тот уран... это разновидность урана, один из его изотопов. Секрет заклю­чается в том, что он почти ничем не отличается от вообще урана...

Выделить уран-235 из урана вооб­ще – вот цель, вот задача.

Физика стоит перед открытиями, значение которых неизмеримо».

Приведенные краткие выдержки из газетных статей и высказывания советских ученых подтверждают, что овладение ядерной энергией, ее высвобождение из недр атомов стано­вилось реальным уже к середине 1941 г. Но все упиралось в отсутствие отечественного урана и в необходи­мость огромных материальных за­трат для создания мощной, очень крупной и специализированной ядер­ной индустрии.

В конце 1940 г. И. В. Курчатов представил в Урановую комиссию доклад, в котором указывал на хозяй­ственное и военное значение про­блемы получения ядерной энергии при делении урана.

То, как оживленно в среде ученых проходили обсуждения проблем ядер­ной физики, хорошо показывает про­ведение регулярных конференций по ядерной физике, по атомному ядру с участием ведущих иностранных уче­ных. Первая такая конференция про­шла в сентябре 1933 г., вторая – в сентябре 1936 г., третья – в октябре 1938 г., четвертая – в 1939 г. и пятая была намечена на октябрь 1941 г., но помешала война.

Советские ученые были близки к освоению ядерной энергии, но война и первые месяцы пора­жений надолго остановили работы, связанные с освоением ядерной энер­гии в СССР. Практически все работы этого направления были заморожены, так как все силы наших физических, химических и других институтов были нацелены на нужды войны. Все силы народа были брошены на фронт, «все для фронта, все для победы».

Тем временем, в США, Англии и Германии работы, связанные с освоением ядерной энергии развивались в полную силу. Этому способствовала, как основная причина, ее военная привлекательность. Перспектива раньше всех создать оружие, устрашающее  своей разрушительной мощью, побуждала правительства этих стран финансировать разработки в сфере ядерной физики.

Результатом этих усилий явился первый исследовательский атомный реактор, пущенный 2 декабря 1942 года в Соединенных Штатах под руководством итальянского ученого Энрико Ферми. Дальнейшие разработки в этом направлении привели к беспримерной по своей разрушительной силе атомной бомбардировке японских городов Хиросима и Нагасаки, ознаменовавшей начало ядерной эры.

Атомистика от послевоенных лет до наших дней.

Испытания, связанные с расщеплением атомного ядра, в Советском Союзе возобновились лишь в середине 1943 года, но уже в декабре 1946 г. в Москве на территории Инсти­тута атомной энергии (носящего сейчас имя его основателя И. В. Курча­това) был введен в действие первый в Европе и Азии исследовательский ядерный реактор. В августе 1949 г. было проведено испытание атомной бомбы, а в августе 1953 г. — водородной. Советские ученые овладели тай­нами ядерной энергии, лишив США монополии на ядерное оружие.

Но создавая ядерное оружие, советские специалисты думали и об использовании ядерной энергии в интересах народного хозяйства, промышлен­ности, науки, медицины и других областей человеческой деятельности. В декабре 1946 г. в СССР был пущен первый в Европе ядерный реактор. В июне 1954 г. вошла в строй первая в мире атомная электростанция в подмосковном городе Обнинске. В 1959 г. спущен на воду первый в мире атомный ледокол «Ленин». Таким образом, ядерная физика создала научную основу атомной тех­нике, а атомная техника в свою очередь явилась фундаментом ядерной энергетики, которая, опираясь на ядерную науку и технику, стала в на­стоящее время развитой отраслью электроэнергетического производства.

Уже в 1986 г. выработка электроэнергии на АЭС мира достигала 15% от общего количества энергии, производимой всеми электростанциями, а в ряде стран ее доля составила 30% (Швеция, Швейцария), 50% (Бельгия) и даже 65-70% (Франция). Достаточно успешно атомная энергетика развивалась и на территории бывшего Советского Союза: строились АЭС, наращивалась минерально-сырьевая урановая база.

Происшедшая в 1986 г. Чернобыльская авария помимо колоссального общего ущерба людям, народному хозяйству страны нанесла тяжелый удар по ядерной энергетике в целом и прежде всего по развивающейся в бывшем СССР, где стало формироваться общественное мнение о необходимости полного запрещения строительства новых и ликвидации действующих АЭС. Однако всесторонний анализ перспектив развития мировой энергетики однозначно показал, что реальных альтернатив у других видов энергии по отношению к атомной энергетике в обозримом будущем, по существу, нет – при обязательном условии, что проектирование и строительство АЭС осуществляется с многократным запасом прочности, с обеспечением их полной безопасности. Именно по такому пути развивается в настоящее время атомная энергетика в высокоразвитых странах – во Франции, Бельгии, в сейсмоактивной Японии, США и других. Уже в 1990 г. мощность АЭС во всем мире достигла около 327 млн кВт и возрастает, по данным МАГАТЭ, к 2005 г. до 447 млн кВт.

Заключение.

Итак, к концу XX века человечество в полной мере освоило использование запасов энергии атомных ядер урана-235. Этого вида топлива, сжигаемого в атомных котлах, не так уж много в земной коре. Если всю энергетику земного шара перевести на него, то при современных темпах роста потребления энергии урана, хватит лишь на 50–60 лет.

Безусловно существует возможность использования, в целях получения энергии, природного газа, угля и нефти. Но такой путь развития энергетики неприемлем. Причин множество: это и экологическая проблема – заражение окружающей среды токсичными химическими продуктами сгорания органического топлива, создание парникового эффекта, и постоянной возрастающей ценой на органическое топливо. В случае с нефтью и газом, можно сказать, что их использование в качестве источника энергии по меньшей мере неразумно.

Здесь возникает проблема: из какого материала и какими методами, в будущем человечество должно получать энергию? На сегодня существует несколько основных концепций решения проблемы:

1.   Расширение сети станций на урановом топливе.

2.   Переход к использованию в качестве ядерного топлива тория-232, который в природе более распространен, нежели уран.

3.   Переход к атомным реакторам на быстрых нейтронах, воспроизводящих ядерное топливо, которое могло бы обеспечить воспроизводство ядерного топлива более, чем на 3000 лет, в настоящее время является сложной инженерной проблемой и несет в себе огромную экологическую опасность, в связи с чем испытывает серьезное противодействие со стороны мировой экологической общественности, по причине чего имеет низкую перспективу на внедрение

4.   Освоение термоядерных реакций. В термоядерных реакциях происходит выделение энергии в процессе превращения водорода в гелий. Быстро протекающие термоядерные реакции осуществляются в водородных бомбах. Сейчас перед наукой стоит задача осуществления термоядерной реакции не в виде взрыва, а в форме управляемого, спокойно протекающего процесса. Решение этой задачи даст возможность использовать громадные запасы водорода на Земле в качестве ядерного топлива.

В настоящее время наиболее разумным представляется следующая схема развития энергетики: расширение сети урановых и уран-ториевых атомных станций в период решения проблемы управления термоядерной реакцией.

Список литературы:

1.     В. Н. Михайлов, «Создание первой советской ядерной бомбы», Москва, ЭНЕРГОАТОМИЗДАТ, 1995

2.     А. М. Петросянц, «Ядерная энергетика»,

3.     В. Г. Язиков, Н. Н. Петров, «Урановые месторождения Казахстана», Алматы, «Гылым», 1995


Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.