скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыУчебное пособие: Векторная модель многоэлектронного атома

1-я группа 2-я группа 3-я группа

 

В каждом из этих наборов суммарные характеристики микросостояний, т.е. квантовые числа ML и MS, определяющие проекции и орбитального, и спинового моментов импульса оболочки, последовательно пробегают все значения. В итоге микросостояния оказываются просто отдельными подсостояниями в таких наборах, каждый из которых характеризуется единым значением модуля вектора и независимо единым значением модуля вектора . Каждый такой набор микросостояний принадлежит к одному определённому коллективному электронному уровню энергии. Такой коллективный уровень называется терм.

Каждая терм характеризуется двумя суммарными квантовыми числами L и S, и на данной стадии анализа объединяет серию микросостояний оболочки атома. Кратность вырождения терма определяется числом принадлежащих ему микросостояний и равна произведению (2L+1)´(2S+1).

Номенклатура термов учитывает, прежде всего, два признака:

во-первых, величину орбитального момента импульса:

По величине суммарного L термы называются:

 

во-вторых, величину суммарного спина (мультиплетность)

По величине суммарного спина S вводится мультиплетность:

Символ атомного терма Рассел-Саундерса имеет вид

По этим признакам электронная конфигурация порождает 15 микросостояний электронной оболочки, которые группируются в три терма:

 

Пример 2: Первая возбужденная конфигурация атома Be(1s22s12p1). Микросостояния и термы.

Микросостояния электронной оболочки атома бериллия в основной и двух последующих возбуждённых конфигурациях: (2s2 ), (2s12p1), (2p2)

АО 2s 2p ML MS
ml 0 +1 0 -1
Конфигурация
2s2 (основ)  0 0
А +1 +1
Б 0 +1
В -1 +1
Г +1 0
Д 0 0
2s12p1(1-я возб.) Е -1 0
Ж +1 0
З 0 0
И -1 0
К +1 -1
Л 0 -1
М -1 -1
 +2 0
2p2 (2-я возб.)  0 0
 -2 0

Первая возбуждённая конфигурация атома содержит следующие микросостояния, которые группируются в два терма: и .

ML

MS

+1 0 -1
+1 а г  ж к
0 б д  з л
-1 в е  и м
 


Спин-орбитальный эффект приводит к тому, что термы Рассел-Саундерса расщепляются на несколько подуровней, каждый из которых характеризуется внутренним квантовым числом, принимающим значения . Внутреннее квантовое число определяет модуль суммарного момента импульса электронной оболочки. Спин-орбитальный эффект возникает в том случае, когда оба из независимых моментов импульса электронной оболочки атома, орбитальный и спиновый не равны нулю. Если же хотя бы один из них равен нулю, то спин-орбитальный эффект не имеет места.

Низший из атомных термов на шкале энергии (основной) определяется на основе трёх правил Хунда.

1-е правило Хунда: В пределах орбитальной конфигурации основной терм обладает максимальной мультиплетностью.

2-е правило Хунда: Если в пределах орбитальной конфигурации у нескольких термов мультиплетность одинакова, то у основного терма орбитальный момент наибольший и квантовое число L максимальное.

3-е правило Хунда: В пределах конфигурации у низшего терма внутреннее квантовое число J минимальное (нормальный терм), если оболочка атома заполнена менее, чем наполовину, и, число J максимальное при заполнении оболочки более, чем наполовину (обращённый терм).

Символы атомного терма Рассел-Саундерса, учитывающие спин-орбитальный эффект, записываются в виде . Эти термы отражают схему последовательных приближений в учёте различных слагаемых полной энергии коллектива электронов в атомной оболочке.

Резюме: Начальное приближение называют одноэлектронным приближением, а в теории атома его же называют принципом водородоподобия. В одноэлектронном (нулевом) приближении все электроны рассматриваются независимо. Энергия взаимного отталкивания электронов частично учитывается искусственным способом в виде эффекта экранирования ядра «внутренними» электронами.

Эффект экранирования положительно заряженного ядра отрицательно заряженным электронным облаком учитывается тем, что в формуле потенциальной энергии электростатического притяжения одиночного электрона к ядру заряд ядра уменьшается на некоторую функцию экранирования, зависящую и от заряда ядра и от совокупности квантовых чисел.

Полученный модифицированный кулоновский потенциал перестаёт быть простой радиальной функцией обратно пропорционального вида, как это имеет место у точечного заряда. Такой потенциал, введённый в уравнение Шрёдингера для единичного электрона, отдает расщепление вырожденного орбитального уровня. Энергия орбитального (одноэлектронного) уровня зависит уже не только от главного, но и от побочного квантового числа, становясь функцией двух дискретных параметров Enl.

Последовательность орбитальных уровней (уровней АО) удаётся выразить в достаточно универсальной форме в виде правила Клечковского-Маделунга. На этой стадии решение очень сложной многоэлектронной задачи заменено решением задачи о состояниях одного-единственного электрона, и его атомные орбитали рассматриваются как эталонные для всех электронов оболочки. В этом приближении энергетические схемы орбиталей отдельных электронов качественно идентичны, и друг от друга не отличаются. Поэтому для построения первичной схемы распределения электронов в оболочке по одноэлектронным состояниям используется один набор АО единственного электрона.

Нулевое приближение учитывает основную часть электростатической энергии кулоновского притяжения электронов к ядру. Согласно оценкам Томаса-Ферми эта энергия нулевого приближения составляет около 83-85% полной энергии атомной оболочки.

Полная энергия оболочки на этой стадии аддитивна и равна просто сумме одно электронных (орбитальных) энергий.

В первом приближении учитывается энергия межэлектронного электростатического отталкивания. Её основная часть может быть представлена в виде энергии отталкивания электронного облака, сформированного на заполненных атомных орбиталях.

В результате выявляется, что микросостояния, возникающие при размещении электронов на внешних заполненных орбиталях, разделяются на неравноценные группы. Их группировка основана на независимости в оболочке атома суммарных квантовых векторов моментов импульса орбитального и спинового  движений электронов.

При объединении групп микросостояний по признакам этих моментов импульса, формируются термы. В пределах каждого терма квантовое число проекции каждого из независимых моментов ML и MS пробегает весь набор необходимых значений от максимального до минимального: MLmin ML MLmax и MSminMSMSmax, откуда для них определяются общие суммарные характеристики терма

L = MLmax =| MLmin| и S= MSmax =| MSmin|

Терм оказывается одним из результирующих многоэлектронных уровней оболочки. Характеристиками такого уровня долны быть орбитальная электронная конфигурация и суммарные орбитальное и спиновое квантовые числа. В общем случае терм вырожден. Кратность вырождения это число микросостояний с равной энергией, объединённых в терм. На этой первой стадии приближения она определяется формулой (2L+1)´ (2S+1).

Во втором приближении учитываются энергетические поправки, появляющиеся за счёт спин-орбитального эффекта. Эти эффекты имеют релятивистское происхождение и формально связываются со взаимодействиями магнитных моментов орбитального и спинового происхождения. Эти поправки имеют второй порядок малости, и примерно на три порядка меньше энергии электронно-ядерных взаимодействий. Термы, порождаемые во втором приближении, также вырождены, и их кратность вырождения равна (2J+1).

Периодическая система Менделеева и некоторые свойства элементов. Содержание. Электронные конфигурации элементов. Правило Унзольда, устойчивость сферических оболочек. Кажущиеся "аномалии" основных конфигураций d-элементов I, VI, VIII групп Периодической системы. “Сферические" и "несферические" электронные конфигурации:

I Б VI Б VIII Б

29Cu(3d104s1);

24Cr(3d54s1);

28Ni(3d84s2);

47Ag(4d105s1);

42Mo(4d55s1);

46Pd(4d105s0);

79Au(5d106s1);

74W(5d46s2);

78Pt(5d96s1);

 


Также и в V периоде прослеживается «аномалия». На самом деле она ярко свидетельствует, что внешний валентный слой этих элементов образован электронами, заселяющими очень близкие уровни одноэлектронные уровни 4d+5s – АО...

42Mo(4d55s1); 43Tc(4d55s2); 44Ru(4d75s1); 45Rh(4d75s1); 46Pd(4d105s0);

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.