скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Теория механизмов и машин для инженеров

Крупнейшим вкладом в науку о машинах были труды Г. Монжа, относящиеся к концу XVIII и началу XIX в. Выдающийся геометр Монж поставил геометрию на службу инженерным наукам, создав начертательную геометрию—этот изящнейший аппарат кинематики машин и механизмов. Он развил идею о механизмах как преобразователях движения отдельных звеньев. Из выдающихся ученых, внесших значительный вклад в теорию машин, мы должны указать на А. Бетанкура. Составленные им совместно с Ланцем таблицы механизмов поражают своим богатством видов простейших машин и механизмов.

Понятие кинематики, в том числе и в приложении к машинам, было сформулировано А. М. Ампером в его первой таблице «Классификация человеческих знаний или синоптические таблицы наук и искусств»

В первой половине XIX столетия рядом ученых эффективно развиваются вопросы динамики машин. Целую эпоху о машинах составили труды Ж. В. Понселе. Ему принадлежит фундаментальный труд «Курс механики в приложении к машинам». В последующих своих книгах Понселе рассматривает динамику машин с учетом движущих сил, сил сопротивления, сил инерции и сил веса.

Крупным вкладом в науку о механизмах в середине XIX столетия явилась работа английского ученого Р. Виллиса, посвященная теории механизмов. Ему принадлежит классификация механизмов, основы которой не потеряли и теперь своего значения.

Создание русской школы по теории механизмов относится к середине XIX в. и непосредственно связано с именем П. Л. Чебышева. Чебышев—основоположник теории структурного и кинематического синтеза механизмов. Он глубже чем кто-либо из его предшественников понял роль математики в решении задач синтеза механизмов. Его труды стали тем фундаментом, на котором были впоследствии развиты аналитические методы синтеза механизмов, получившие такое широкое развитие в наше время.

Во второй половине XIX в. публикуются работы выдающегося немецкого ученого Ф. Рёло. Его труды обогатили науку о машинах принципиально новым содержанием. Им вводятся важнейшие в теории механизмов понятия о кинематической паре и кинематической цепи. Его «Теоретическая кинематика» может быть признана трудом энциклопедическим, охватывающим все стороны учения о механизмах.

Работами Виллиса, Чебышева и Рёло определялись основные научные направления, ставшие впоследствии содержанием науки, которую мы теперь называем «Теория механизмов и машин».

Здесь уместно вспомнить слова Ч. Дарвина: «Наука заключается в такой группировке фактов, которая позволяет выводить на основании их общие законы и заключения».

Таким образом, мы можем говорить достаточно уверенно о рождении новой науки—теории механизмов и машин - после публикации работ Виллиса, Чебышева, Рёло и ряда ученых второй половины XIX в., создавших те научные основы, которым должна удовлетворять каждая наука.

Это в первую очередь наличие строгой научной систематики и классификации изучаемых объектов. Затем искусство замены реального физического объекта некоторой абстрактной механической моделью, достаточно близкой к физической природе изучаемого объекта. Наконец, умение дать математическое описание рассматриваемой модели, позволяющее провести с той или иной степенью строгости анализ свойств и явлений созданной модели.

Действительно, Виллис создал наиболее совершенную для того времени классификацию механизмов. Рёло создал механические модели механизмов и их элементов, введя понятие о кинематической паре, кинематической цепи и кинематической схеме. Чебышев устанавливает аналитическую связь между числом звеньев и числом кинематических пар механизмов, т. е. дает основы структуры механизмов и показывает, каким мощным аппаратом является математика для решения задач анализа и синтеза механизмов.

Теперь, когда мы, хотя и очень приближенно, установили начало становления теории механизмов и машин как науки, нет необходимости подробно излагать историю ее развития от второй половины XIX в. до наших дней. Перечислим только некоторых ученых, с именами которых связано развитие науки о машинах. В России это были Петров, Орлов, Вышнеградский, Сомов, Жуковский, Гохман, Горячкин, Мерцалов, Ассур и другие: в Германии — Грюблер, Мор, Бурместер, Грасгоф, Бах, Виттенбауэр, Альт и другие.

В США фактически до 40-х годов не было школы в области теории механизмов и машин, и только после 40-х годов появляются первые работы американских ученых. В настоящее время американская школа представляет собой крупное направление в области теории механизмов и машин.

Широкое развитие теория механизмов и машин после второй мировой войны получила в социалистических странах, а также в Италии, Голландии, Австралии, Канаде и в ряде других стран.

Теория механизмов и машин всегда была одной из многих ветвей того дерева, которое мы называем механикой. В последние годы в связи с автоматизацией производства и научных исследований механика машин все шире начинает использовать достижения современной теории управления. Происходит как бы симбиоз механики машин и теории управления: на стыке этих наук вырастает новая по существу, но богатая опытом прошлого наука «механика машин и управления машинами».

Нелегко прогнозировать будущее науки, особенно в век бурного развития науки и техники.

Еще великий русский ученый химик Д. И. Менделеев писал: «Границ научному познанию и предсказанию предвидеть невозможно».

Современная ТММ и её направления

Основным направлением развития современной техники является автоматизация всех видов производства с целью облегчить физический труд людей, повысить производительность их труда, улучшить качество изделий, обеспечить возможность широкого выпуска изделий массового производства.

Одновременно с ростом автоматизации физического труда в настоящее время важнейшей становится проблема автоматизации и интеллектуального труда человека, замена человека машиной в решении различных логических задач. Автоматизация физического и интеллектуального труда требует создания новых механизмов, машин-автоматов и систем машин автоматического действия.

В решении задач автоматизации важнейшая роль принадлежит теории механизмов и машин — научной базы машиностроения.

Как указывалось выше, теория и проектирование машин и систем машин автоматического действия родились на стыке двух наук: механики машин и теории управления. Механика машин развивалась и развивается на базе теории механизмов и машин, а теория управления — на базе классической теории регулирования. Привлекая к решению своих задач аппарат современной математики, достижения в области физических наук, используя теоретическую механику, теорию информации, кибернетику, электронику и другие фундаментальные науки, механика машин и теория управления машинами призвана развивать инженерные методы анализа и синтеза машин-автоматов и систем машин автоматического действия.

Если обратиться к истории развития машиностроения, то на всех этапах создания тех или иных машин разрабатывались и соответствующие методы управления ими. Достаточно вспомнить игрушки-автоматы, созданные многими умельцами в XVII—XVIII вв., жаккардовые ткацкие станки, паровые машины и другие двигатели, снабженные регуляторами, механические пианолы и тому подобные механизмы и машины. Но до середины нашего века управление машинами и механизмами лежало в основном на человеке, а следовательно, если так можно сказать, «спектр управления» механизмами и машинами находился в пределах физиологических и биомеханических возможностей человека.

Поистине революционную роль в системах управления и автоматизации производства сыграло появление математических счетно-решающих машин и устройств. Их «спектры» оказались безгранично большими, чем «спектры» человека. Но, может быть, самое главное заключается в том, что с помощью этих машин стало возможным заменить человека не только в процессах управления машинами, но и в выполнении многих других интеллектуальных функций, требующих решения сложнейших логических задач. С помощью этих машин стали возможными анализ многозвенных, с большим числом степеней свободы механизмов, решение задач оптимального синтеза как отдельных механизмов, так и сложных машин и систем машин автоматического действия, решение задач проектирования многокритериальных и многопараметрических машинных устройств, программное управление большинством современных машин, управление новыми машинами с устройствами биомеханического вида типа манипуляторов, роботов, шагающих и других машин.

Научное единство механики машин и теории управления машинами весьма наглядно и, на наш взгляд, убедительно показано на примерах решения проблем современной теории механизмов и машин.

Остановимся только на проблеме общей теория машин и систем машин автоматического действия. В ближайшие годы все более широкое применение в производстве получат машины автоматы, автоматизирующие самые различные технологические процессы как в промышленности, так и в сельском хозяйстве. Широкое применение машины-автоматы и устройства автоматического действия получат для решения различных научно-исследовательских задач, в частности при исследовании законов природы, изучении космоса, глубин земли и океанов. Вновь создаваемые машины-автоматы должны обладать высокой эффективностью выполнения технологического процесса, удовлетворять требуемым экономическим показателям и иметь автоматическое управление, максимально освобождающее человека от контроля за работой машины. В целях повышения производительности труда, увеличения количества выпускаемой продукции, улучшения экономических показателей производства будут создаваться не только машины-автоматы, но и системы машин автоматического действия в форме различных поточных линий, переходящих в заводы-автоматы.

Отличительной чертой машин-автоматов и систем автоматического действия ближайшего будущего будет высокий уровень управления ими по самым различным параметрам, критериям и показателям. Система управления в зависимости от требований, которые предъявляются к управляемому объекту, и от условий, в которых он работает, могут иметь логические элементы электронного, пневматического, гидравлического и механического типов. Системы управления могут содержать блок памяти и блоки, которые обеспечивают автоматическую поднастройку и адаптацию управляемых объектов, позволяющие качественно выполнять требуемый технологический процесс при изменяющихся внешних условиях. Создание системы машин автоматического действия потребует разработки методов вероятностного и структурно-логического их анализа и синтеза с учетом их производительности, эффективности, надежности, качества продукции, экономичности и точности действия. Для анализа и синтеза таких систем потребуется создание и развитие специальных формализованных языков, ориентированных на решение проблем синтеза, развития новых математических методов решения задач структурного синтеза с широким использованием теории исследования операций.

Процессу функционирования больших технологических систем и процессу их синтеза свойственна известная неопределенность, вызванная неполнотой информации об условиях эксплуатации, о качестве используемых систем и т.п. Для анализа и синтеза технологических систем подобного типа, если их рассматривать как системы с неполной информацией, могут быть использованы аналитические методы, к которым относятся вероятностные схемы случайных величин и случайных функций, математический аппарат теории массового обслуживания и т. д. В исходных случаях и при полной неопределенности тех или иных условий работы технологических систем может быть использована теория игр.

Необходимо дальнейшее развитие теории алгоритмических процессов проектирования систем машин автоматического действия.

Любая машина, в том числе и машина-автомат, представляет совокупность механизмов, выполняющих различные операции: технологические, транспортные управляющие и т. д. Многообразие этих механизмов очень велико, их можно классифицировать по различным признакам в зависимости от поставленной задачи анализа или синтеза. Наиболее удобна классификация по видам тех элементов, которые входят в состав того или иного механизма. Так, мы различаем механизмы только с жесткими звеньями и механизмы, у которых кроме жестких звеньев, имеются гидравлические пневматические, электрические, наконец, электронные и фотоэлектронные элементы.

Развитие методов анализа и синтеза механизмов указанными элементами составляет одну из главных задач современной теории механизмов.

Так как при решении задач синтеза механизмов чаще всего мы имеем дело с многокритериальными системами, задачи синтеза связаны обычно с поиском оптимальных вариантов Нахождение оптимальных вариантов и, чаще, областей, в которых существуют эти вариант, требует развития теории оптимального синтеза механизмов. Решение подобных задач, как правило, возможно только с помощью ЭВМ, а это требует разработки соответствующих алгоритмов и программ.

Большие задачи стоят в области анализа и синтеза механизмов передач. Здесь в первую очередь надо отметить необходимость дальнейшего развития синтеза зубчатых механизмов, особенно пространственных волновых зубчато-рычажных и т. д.

Повышение энергетических, силовых и скоростных характеристик машин автоматического действия, высокие требования к их точности и надежности обусловливают развитие в ближайшие годы методов динамического исследования и расчета машин.

Необходимо развивать методы изучения динамических режимов машин как в периоды установившихся так и в периоды неустановившихся движений. Получит дальнейшее развитие динамика машин с переменной массой звеньев и переменной структурой.

Особую роль в развитии динамики машин играют вопросы колебаний в машинах. С одной стороны, это вопросы борьбы с вибрациями путем создания виброустойчивых конструкций машин и механизмов, с другой стороны — это использование эффекта вибраций и создание новых двигателей и вибрационных механизмов, обладающих требуемыми кинематическими характеристиками. «Все в мире вибрирует» — это не просто фраза, а реальная действительность, с которой мы должны считаться и уметь извлекать выгоду из нее.

Важной социальной проблемой являются изучение влияния вибраций на организм человека и разработка средств его вибрационной защиты. Перспективно направление, связанное с использованием источников вибрации с малыми амплитудами и большими частотами для различных приборов, медицинского оборудования, для создания движителей с вращательным и поступательным движением и т. д.

В этой области также важную социальную задачу призваны решить исследования причин и источников шумовых эффектов в машинах и разработка задач динамики. машин, связанных с полной или частичной локализацией шумов определенных уровней. Одновременно надо продолжать изыскания по использованию шумовых дефектов для технической диагностики машин.

К машинам автоматического действия относится новый класс машин, получающий широкое применение в технике. Это роботы, манипуляторы, шагающие и ползающие машины и т. п. Эти машины позволяют осуществлять самые сложные движения исполнительных органов и тем самым автоматизировать широкий круг технологических операций. Особое значение эти машины и системы будут иметь в тех случаях, когда необходимо освободить человека от работы в тяжелых, вредных или опасных условиях, как, например, высокая температура, повышенная радиоактивность, наличие вредных газов и химических продуктов. С помощью этих машин человек может быть освобожден от утомительных и монотонных операций на конвейерах, поточных линиях, от выполнения тяжелых погрузочно-разгрузочных работ. С помощью промышленных роботов может воспроизводиться огромное количество операций по транспортировке обрабатываемого объекта, закреплению и раскреплению их в обрабатывающих машинах, по упаковке, расфасовке, при контрольных операциях.

Подобные автоматические машины и системы уже нашли и будут далее находить применение при проведении научных исследований в космосе, в глубинах и на дне океанов, под землей. Замена человека на всех тяжелых, утомительных, трудных операциях имеет громадное социальное значение, так как она коренным образом освобождает человека от тяжелого физического труда, предоставляя человеку функции управления и введения в систему необходимой дополнительной информации. Рабочие органы этих машин, как правило, представляют собой сложные по структуре пространственные кинематические цепи со многими степенями свободы.

Задача изучения механики роботов, манипуляторов, шагающих и других машин и систем тесно переплетается с задачами управления в самом широком понимании вопросов управления, т. е. включая разработку искусственного интеллекта для них. В первую очередь должны быть развиты работы по структурному, кинематическому и динамическому анализу и синтезу различных схем механизмов, роботов, манипуляторов, шагающих и других машин и систем.

Промышленные роботы и манипуляторы, управляемые оператором или с помощью программного устройства, могут быть отнесены к роботам первого поколения. В настоящее время должны получить быстрое развитие работы по созданию роботов последующего поколения, обладающих некоторыми органами чувств человека, например, осязанием, слухом, видением, обонянием, и способных воспринимать некоторую неощутимую человеком 'информацию, например, реагировать на ультразвук, на электромагнитные и тепловые поля и т.д. К роботам еще более позднего поколения будут относиться устройства, обладающие искусственным интеллектом. В решение этой последней проблемы входят создание методов описания окружающего мира и формирования этого мира в памяти роботов, разработка специальных формализованных языков как средства для управления роботами, их обучения и управления их поведением. К проблеме искусственного интеллекта для роботов тесно примыкает проблема взаимодействия робота со средой и человеком, а также вопросы взаимодействия между человеком и роботом. Сюда относятся разработка способов общения человека с роботом, выявление характеристик в системе «человек—робот», а также исследование распределения функций между человеком и роботом в зависимости от степени автономности последнего.

Одной из важнейших в этом научном направлении является проблема создания автоматических локомоционных машин, в том числе передвигающихся с помощью конечностей, т. е. проблема механики и управления шагающими машинами и другими подобными устройствами. Создание локомоционных устройств, передвигающихся с помощью конечностей, требует решения задач структурного, кинематического и динамического анализа и синтеза механизмов, выбора и проектирования двигателей, разработки легких, малогабаритных и мощных приводов с высоким КПД. К этой проблеме относятся и задачи разработки экзоскелетонов, т.е. устройств, совершенствующих силовые параметры человека, увеличивающих его выносливость и создающих возможность его перемещения при повреждении опорно-двигательного аппарата.

Роботы и шагающие машины по своей структуре и функциональным характеристикам во многом копируют человека и животных. Поэтому очень важно развитие исследований по биомеханике и по физиологии. Здесь мы имеем в виду изучение биомеханических характеристик опорно-двигательного аппарата человека, животных, насекомых, затем физиологических процессов, лежащих и основе управления двигательными процессами, получения слуховой, зрительной и других форм информации, наконец, процессов пространственной ориентации и средств, обеспечивающих устойчивость живых существ.

Развитие современной теории механизмов и машин требует самого тесного сотрудничества ученых и практиков. Практика будет ставить перед теорией все новые и новые вопросы, а теория будет черпать в практике базу для своих научных исследований.

В связи с этим уместно вспомнить одно из высказываний П. Л. Чебышева. Он подчеркивал, что сближение теории с практикой дает самые благотворные результаты, и не одна только практика от этого выигрывает, сама наука развивается под влиянием ее, она открывает им новые предметы для исследования или новые стороны в предметах, давно известных.

Инженеры в поисках новых решений

Во всех научно-фантастических романах, рассказывающих о будущем, непременным спутником человека является робот. Ученый и писатель-фантаст А. Азимов даже разработал «законы» робототехники. Но это - фантастическая литература. А вот названия некоторых научных статей: «Модель очувствленного робота», «Некоторые проблемы организации стереозрения робота», «Определение положения корпуса шестиногого робота при ходьбе»... «Железный человек» уже сошел со страниц фантастических книг и стучится в нашу сегодняшнюю жизнь. Ученые и конструкторы вплотную подошли к созданию промышленных роботов, весьма интересующих специалистов многих предприятий. Дело в том, что подобные устройства стали не только экономической, но и социальной необходимостью во многих сферах производства.

Сколько еще человеку приходится выполнять тяжелой, вредной или попросту неинтересной работы! Как это ни парадоксально, появились целые отрасли, где именно присутствие человека затрудняет рост производительности труда, потому что чисто физиологические его особенности довольно ограничены и порой не соответствуют темпам современного производства. Существует несколько областей, где применение подобных роботов уже сегодня вполне оправдано. К примеру, это освобождение человека от тяжелого или монотонного и утомительного труда. И еще одна (воистину необозримая) область будущего и частично сегодняшнего применения роботов - исследование космического пространства, освоение планет Солнечной системы, завоевание глубин земли и океана на нашей родной планете...

Но все сказанное - только технический аспект применений роботов. Существует и другой, не менее важный - социальный. Дело в том, что многие предприятия испытывают нехватку рабочих, такое же положение и в сельских местностях. Роботы уже сегодня могли бы взять на себя многие технологические операции на заводах и фабриках. Думается, настала пора и для создания подобных механизмов, способных работать в сельском хозяйстве,

Что уже сделано? Роботы типа «механическая рука» с программным управлением в ближайшее время появятся в цехах заводов. Эти механизмы очень удобны для обслуживания станков, ковочных, литейных сварочных и многих других машин. Они могут снимать готовые детали, складывать их и выполнять другие операции.

Уже существуют и более совершенные модели роботов, обладающие своеобразными «органами чувств»— телевизионным зрением, осязанием и слухом. Такие механизмы способны работать с деталями, не находящимися на строго фиксированных местах, могут «дотянуться» до каждой из них.

И, наконец, пока только на столах конструкторов рождаются роботы, способные, например, собрать по чертежу узел из произвольно лежащих перед ними деталей. Более того, они смогут анализировать сложившуюся ситуацию и принимать в ней наилучшие решения.

Современные роботы строятся в основном на принципе использования биомеханических свойств человека и животных. Среди классов этих машин в первую очередь надо остановиться на промышленных роботах, которые могут выполнять практически неограниченное число операций. Все дело в том, как ориентировать подобного робота.

В зависимости от заданной программы робот выполняет те или иные производственные задачи. Программа его работы может быть заранее записана на магнитной или перфорированной ленте. «Обучение» робота можно производить даже в процессе работы. В чем суть такой операции? Человек производит вручную те операции, которые должен выполнять промышленный робот. Все эти движения записываются в программное устройство и в «память» машины.

В основном разрабатываются системы роботов, имеющих в качестве рабочих органов манипуляторы. В отличие от обычного автомата, который создается для выполнения определенной, неизменной операции, манипуляторы—сложные универсальные многоцелевые механизмы. Наиболее распространенный тип таких устройств - это машины, способные выполнять целый ряд операций по заранее составленной «жесткой» программе. Когда, например, отпадает необходимость в какой-то технологической операции, такой робот можно легко перестроить на другую, предусмотренную в его рабочей программе. Но возможны и более «умные» роботы-манипуляторы, которые способны адаптироваться к обстановке и самоперестраиваться на новую программу, на выполнение новых видов работ. Не исключается и своеобразный «полуавтоматический» режим действия такого робота, когда в очень сложных случаях в управление им вмешивается человек.

Робот, в состав которого входит манипулятор, имеет специальный исполнительный механизм, имитирующий руку человека. Полнота имитации различна в зависимости от выполняемой задачи. Более того, «руку» манипулятора по характеру выполняемых движений можно сделать более «богатой», чем человеческая. Допустим, она может вращаться в суставах, двигаться поступательно, изменять длину своих звеньев.

Аналогичные принципы положены в основу конструкции шагающих машин, где в какой-то степени копируются движения ног человека и животных. Установлено, что наилучшей из подобных конструкций следует считать шестиногую. Оказывается, что движение на шести ногах является более совершенным как в смысле устойчивости, так и в смысле возможностей маневрирования.

Возможны и комбинированные машины, которые начинают «шагать», когда нельзя «катиться», а потом снова возвращаются к колесному движению. Установив на таком устройстве специальные реактивные движки, можно научить его и «перепрыгивать» встречающиеся препятствия.

Можно предполагать, что в будущем в конструкциях роботов мы научимся использовать законы движения не только человека, животных и насекомых, как это делается сегодня, но и многих других существ, что будут созданы роботы не только ходящие и катающиеся, но и ползающие и скачущие.

Сегодня трудно еще предвидеть, когда наступит «эра роботов». Но весь предыдущий опыт науки и техники показал, что самые смелые прогнозы, представляющиеся весьма отдаленными, оказывались воплощенными в жизнь гораздо быстрее. Здесь хотелось бы отметить чрезвычайно важную закономерность развития техники, которая вселяет оптимизм. Технический прогресс постоянно ускоряется, то есть непрерывно уменьшается продолжительность того времени, которое лежит между моментом получения первых результатов в научном исследовании и моментом выпуска на их основе промышленного продукта. Причин тому несколько и первая - постоянное увеличение существующего объема знаний. Сама разработка технических нововведений напоминает цепную реакцию, когда каждое изобретение вызывает к жизни несколько новых. Одним из примеров могут служить вибрационные режимы движения и воздействия. Известно, что долгое время на вибрацию смотрели в основном как на вредный эффект, понижающий прочность и надежность машин. В дальнейшем вибрационный эффект стали использовать для транспортирования обрабатываемого материала, разделения его на фракции, сортирования и т. д. Так уже нашли применение вибрационные решета для сортирования и калибровки семян различных сельскохозяйственных культур. Сравнительно недавно осуществлено на практике вибрационное транспортирование зерна с одновременной сушкой, что позволило интенсифицировать этот процесс на 40—70 процентов.

Дальнейшее развитие должна получить теория пространственных механизмов применительно к новым видам автооператоров, роботов, манипуляторов и шагающих машин. Широко внедряться, по-видимому, будут бесступенчатые передачи, позволяющие плавно изменять скорости исполнительных и других механизмов.

До последнего десятилетия техника использовала в основном механизмы, обладающие одной и в редких случаях (в конструкциях механизмов дифференциалов) двумя степенями подвижности. Сейчас все шире применяются механизмы со значительно большим числом степеней подвижности. Это стало возможным благодаря появлению комплексных систем управления, которые обеспечивают движение отдельных звеньев механизмов по более сложным законам.

Современные инженер-конструктор, технолог, исследователь должны в совершенстве владеть методиками и конструирования новых приборов, высокопроизводительных машин, машин-автоматов, автоматических линий, удовлетворяющих высоким требованиям надёжности и точности воспроизведения перемещений рабочего органа и т.д.

При создании сложных машин и особенно машин-автоматов или автоматических линий необходимо, прежде всего, разработать рациональный технологический процесс, в соответствии с которым конструктору и технологу надлежит проектировать отдельные исполнительные механизмы, механизмы управления, специальные устройства для контроля прочности и отбраковки изделий и др.

Машиностроительное конструирование в целом базируется на ряде общеобразовательных, общетехнических и технологических дисциплин. Кроме этого, конструкторская работа в каждой отрасли машиностроения опирается на материал специальных дисциплин данной отрасли. Однако основой всех этих дисциплин является теория механизмов и машин.

Создание новых, более совершенных машин и механизмов требует развития существующих и разработки новых инженерных методов анализа и синтеза их. В решении этих задач важнейшая роль принадлежит теории механизмов и машин.

Таким образом, ТММ является одной из важнейших дисциплин, дающих знания инженеру-машиностроителю для качественного проектирования машин и механизмов.


Список используемой литературы

1.         Кореняко А.С. Теория механизмов и машин. Изд. «Вища школа», 1976 г.

2.         Кульбачный О.И. и др. Теория механизмов и машин. Проектирование. М., «Высшая школа», 1970 г.

3.         Лепихов А.М. (составитель) Академик Артоболевский: Сборник. М.: Знание, 1983 г.

4.         Машков А.А. Теория механизмов и машин. Изд. «Вышэйшая школа» Минск 1971 г.

5.         Попов С.А., Тимофеев Г.А. Курсовое проектирование по теории проектирования и механике машин. М., «Высшая школа» 2002 г.

6.         Юдин В.А., Петрокас Л.В. Теория механизмов и машин. М., «Высшая школа», 1977 г.


Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.