скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Морфологічна характеристика впливу магнітного поля та лазерного опромінення на регенерацію периферійного нерва

Параметри, що передбачені в конструкції приладу:

-      напруга МП – до 100 мТл;

-      потужність ЛВ – до 100 мВт;

-      довжина хвилі ЛВ :

         - 0,67 мкм (червоний діапазон);

         - 0,78 мкм (інфрачервоний діапазон);

- частота модуляції МП і ЛВ – від 1 до 100 Гц.

Необхідна доза для проведення 1 сеансу МЛТ розраховувалась з відомою формулою : t = (ES / P) K,

де t- час впливу, с; E- необхідна енергія для опромінення зони, Дж/см2; S- площа зони впливу, см2; Р- потужність лазерного випромінення, Вт; К- коефіцієнт віддзеркалення. Відповідно для ЛВ у червоному діапазоні спектра вона становила 4 хв., у інфрачервоному- 2хв. МЛТ проводилась на ділянку пошкодження нерва та проксимальний і дистальний його відрізки. Тваринам контрольної групи після пересічення і зшивання нерва МЛТ не проводилось.

Післяопераційн рани усіх тварин загоїлись первинним натягом. Летальних випадків тварин не було.

Тварин виводили з експерименту через 3, 6 та 12 тижнів за допомогою передозування препарату Тіопентал (25мг/100г) при інтраперитонеальному введенні та давали летальну дозу ефіру. Евтаназію експериментальних та контрольних тварин виконували згідно міжнародних нормативів гуманного ставлення до тварин [Добровольский Г.А., 1984; Западнюк И.П., 1983; Методические рекомендации по представлению документации на лекарственные средства ФК Минздрава Украины, 1993].

Розроблена методика ЧМ МЛТ передбачала:

-            черезшкірний вплив на відрізки пошкодженого нерва та на місце їх зшивання МП та ЛВ у червоному спектрі з частотою модуляції 9,4 Гц та 37,5 Гц (МП до 30 мТЛ, ЛВ – до 50 мВт, л=0,67 мкм – частота блокування кальцієвих каналів);

-        черезшкірний вплив на відрізки пошкодженого нерва та на місце їх зшивання МП та ЛВ в нфрачервоному спектрі з частотою модуляції 9,4 Гц та 37,5 Гц (МП – до 30 мТл, ЛВ – до 50 мВт, л – 0,78 мкм).

Матеріалом для дослідження були невроми, центральні (проксимальні) та периферійні (дистальні) відрізки пошкодженого нерва. Для світлової мікроскопії матеріал фіксували у 10% розчині формаліну, промивали та отримували зрізи на заморожувальному мікротомі, які імпрегнували азотнокислим сріблом за Рассказовою. Для вивчення сполучної тканини препарати забарвлювали азур II - еозином. Для морфометричного аналізу використовували напівтонк поперечні зрізи нервів, виготовлені на ультратомі LKB і забарвлені толуїдиновим синім.

У даному дослідженні визначали такі величини: об’єм волокон в об’ємі нерва (%), кількість нервових волокон в одиниці об’єму нерва, (мкм3), площу поперечного зрізу нервового волокна (мкм2), площу поперечного зрізу осьового циліндру (мкм2), товщину мієлінової оболонки (мкм2).

При статистичному аналізі морфометричних даних обчислювали середні значення величин, середн квадратичне відхилення, похибку середньої, коефіцієнт варіації, коефіцієнт точності визначення середньої і відповідності до рекомендацій, які містяться у підручниках з математичної статистики [Лакин Г.Ф., 1973; Урбах В.Ю., 1964]. З метою оцінки співвідношення трьох типів мієлінових нервових волокон (за розміром), використовували непараметричний критерій Колмогорова-Смірнова. Для виявлення зв’язків у змінах площ поперечних зрізів мієлінового нервового волокна, осьового циліндру та мієлінової оболонки використовували кореляційний аналіз. Препарати тонких і напівтонких зрізів фотографували за допомогою цифрової фотокамери “Олімпус”.

Для електронномікроскопічного дослідження невеликі фрагменти дистальних відрізків нерва фіксували в 1%-му розчині чотирьохокису осмію за Колфілдом протягом 2-х годин при температурі +4°С. Об’єкти зневоднювали в етанолі зростаючих концентрацій, в ацетоні і заливали в суміш епону з аралдитом за загальноприйнятою методикою [Бирюзова В.И.,1963; Карупу В.Я., 1984]. Ультратонкі зрізи одержували на ультратомі LKB-8800 (Швеція) у поздовжній та поперечній проекціях нерва. Контрастували їх у 2%-му розчині уранілацетату в 70%-му етанолі протягом 15 хвилин і азотнокислим свинцем стільки ж часу, а потім зрізи вивчали та фотографували в електронному мікроскопі ЭМВ 125К.

Результати досліджень та їх обговорення. Передумовою цього дисертаційного дослідження були пошуки нових засобів та методів лікувального впливу на процеси, які відбуваються у пошкоджених нервах, з метою стимуляції їх відновлення, що наразі є однією з актуальних задач неврології та нейрохірургії. Інше, що спонукало нас на проведення даного дослідження, була відсутність інформації про вплив МЛТ на регенерацію пошкоджених нервів та наявність нових теоретичних розробок щодо д МП і НІЛВ на біологічні об’єкти.

З’явились фундаментальні наукові праці, які пояснюють взаємодію слабких МП з біологічними системами і доводять можливість впливу МП на структурні елементи атому (електрони, нуклони), мембрани живих клітин зі зміною їх проникності для найважливіших іонів (Na+, Ca2+, K+). В основі цієї взаємодії лежить принцип резонансу, тобто, при відповідній частоті зовнішнього МП можливий активний вплив на атоми, іони тощо. Прикладом “резонансної взаємодії” фізичних факторів і деяких структур біологічного об’єкту є магніторезонансна томографія (МРТ) – одна з найбільш інформативних діагностичних систем.

Таким чином, вище наведені дані стали підставою для проведення експериментальних досліджень застосування ЧМ МЛТ при пошкодженні периферійних нервів з метою визначення параметрів МЛТ, які б давали найкращі результати.

Використовуючи МЛТ з метою стимуляції регенерації пошкодженого нерва, ми звертали увагу на процеси, які відбуваються у центральному відрізку, регенераційній невромі та дистальному відрізку. Особливо цікавим було те, як впливає МЛТ на процеси дегенерації, оскільки вчення про дегенерацію нервового волокна, відокремленого від свого трофічного центру – тіла нейрона, сформувалось ще у 1850р. завдяки класичним роботам A. Waller, який описав патологоморфологічну картину дегенерації периферійного відрізка нерва.

Через 3 тижн після операції та проведення МЛТ у проксимальних відділах пошкоджених нервів в усіх експериментальних групах спостерігаються ретроградні дегенеративні зміни та помірні прояви подразнення нервових волокон. Епіневрій потовщений, щільність капілярів у ньому збільшена, венули дещо розширені та переповнені кров’ю. Нервові волокна мають деякі нерівності контурів, зустрічаються місця, де вони гіпо- чи гіперімпрегновані. Ступінь вираженості цих змін у 5 групі тварин значно менший, ніж у тварин інших експериментальних груп. Крім того, звертає на себе увагу поява у проксимальному відрізку нерва тварин 5 групи більшо кількості тоненьких регенеруючих волокон і зменшення загальної інфільтрації.

Регенераційна неврома у цей термін дослідження містить малодиференційовану сполучну тканину з великою кількістю фібробластів, макрофагів та тучних клітин. Колагенові волокна сполучної тканини помірно потовщені, а сама сполучна тканина виглядає більш однорідною. Рідше зустрічаються мало- та безсудинні зони. Звертає на себе увагу збільшення кількості регенеруючих нервових волокон. Затримані колби росту та спіралі Перрончіто спостерігаються відносно рідко. Визначається рівномірність кровопостачання невроми і більш упорядковане розташування нервових волокон, переважна більшість яких розміщується вздовж осі нерва.

У периферійному відрізку нерва через 3 тижні відмічається наявність овоїдів менших розмірів, що, на нашу думку, свідчить про більш швидкий перебіг процесів дегенерації. Виявляється проліферація нейрофіламентів і формування бюнгнерівських стрічок. Дані процеси співпадають з описаними в літературі. Нечисленні регенеруюч нервові волокна, кількість яких у тварин 5 групи є значно більшою, ідуть з центрального відрізку нерва у периферійний переважно прямолінійно. За рахунок збільшення кількості та гіпертрофії нейролемоцитів збільшується діаметр бюнгнерівських стрічок.

Через 6 тижнів після операції та проведення МЛТ у проксимальному відрізку нерва відмічається більше клітинних елементів у сполучнотканинних структурах, що, на нашу думку, пов’язане зі стимуляцією їх проліферації МЛТ. Значно менша кількість аргірофільних включень у цитоплазмі нейролемоцитів свідчить про зменшення кількості продуктів деструкції передіснуючих нервових волокон. Безпосередньо біля місця травми можна спостерігати слабко виражені явища подразнення нервових волокон та поодинокі розширені інтраневральні судини.

У ділянц регенераційної невроми, у цей час, сполучна тканина більш зріла, і в ній міститься велика кількість колагенових волокон і небагато фібробластів макрофагів та тучних клітин. Через ділянку рубця проходять численн новоутворені нервові волокна, кількість яких у 5 експериментальній груп найбільша. Переважна більшість волокон направлена вздовж осі нерва і тільки деякі з них втрачають поздовжню орієнтацію і прямують до периферійних відділів невроми. Кількість спіралей Перрончіто тут значно зменшується, але збільшується кількість аксонів з колбами росту. Відмічається збільшення діаметру регенеруючих нервових волокон.

У периферійному відрізку нерва виявляється збільшення діаметру бюнгнерівських стрічок. Продуктів деструкції передіснуючих нервових волокон практично не відмічається. Регенеруючі нервові волокна, кількість яких значно збільшується, особливо у тварин 5 групи, розміщується за ходом тяжів нейролемоцитів, які сформувались у периферійному відрізку нерва.

Через 12 тижнів після початку експерименту у проксимальному відрізку нерва тварин 2, 3, 4 та 5 груп спостерігаються морфологічні особливості будови, близькі до таких, як описані іншими дослідниками у сідничому нерві інтактних тварин. Звертає на себе увагу дещо більша кількість фібробластів та тканинних базофілів у ендоневрії та деяке потовщення останнього. За рахунок збільшення діаметру осьових циліндрів нервові волокна потовщуються, а кількість нейролемоцитів у них збільшується.

При аналіз даних, отриманих при дослідженні експериментального матеріалу у 2, 3, 4 та 5 групах тварин, з’ясувалось, що під впливом МЛТ у різних діапазонах та з різною частотою модуляції у процесах відновлення пошкодженого нерва відбуваються майже однакові позитивні зрушення, у порівнянні з 1 групою тварин. Але, слід зазначити, що дія МЛТ в інфрачервоному спектрі з частотою модуляції 37,5 Гц найкращою.

Таким чином, у тварин усіх експериментальних груп темпи дегенерації передіснуючих нервових волокон на ранніх стадіях відновлення пошкодженого нерва практично однакові. Але на більш пізніх термінах вони значно прискорюються, і особливо це проявляється у тварин 5 групи.

Кількісний аналіз структурної перебудови тканинних елементів, їх композиції та зв’язків, що відображено на рисунках 1, 2, 3, 4, 5, дає переконливий матеріал для побудови системи доказів характеру морфологічних змін і пов’язаного з ними характеру функціональних процесів.

Морфометричн підходи обумовлюють стандартизацію методів відбору типів їх обробки, математичного аналізу вимірювань. Крім того, отримані кількісні показники дають змогу порівнювати їх з даними літератури та екстраполювати результати на інш моделі дослідів та на людину, а також суттєво доповнюють морфологічну та електронномікроскопічну картини.

Невротизація периферійного відрізку пошкодженого нерва та мієлінізація новоутворених нервових волокон не завжди відбуваються задовільно і не завжди приводять до відновлення втраченої функції, що залежить від багатьох причин.

 



Рис. 1. Графік змін стереологічних показників дистального відрізку сідничого нерва контрольної групи тварин. По осі абсцис – терміни досліджень, по осі ординат – середні величини показників.



Рис. 2. Графік змін стереологічних показників дистального відрізку сідничого нерва за умови спільної дії магнітного поля та лазерного випромінення у червоному спектрі з частотою модуляції 9,4 Гц. По осі абсцис – терміни досліджень, по осі ординат – середні величини показників.


Рис. 3. Графік змін стереологічних показників дистального відрізку сідничого нерва за умови спільної д магнітного поля та лазерного випромінення у червоному спектрі з частотою модуляції 37,5 Гц. По осі абсцис – терміни досліджень, по осі ординат – середн величини показників.


Рис.4. Графік змін стереологічних показників дистального відрізку сідничого нерва за умови спільної д магнітного поля та лазерного випромінення в інфрачервоному спектрі з частотою модуляції 9,4 Гц. По осі абсцис – терміни досліджень, по осі ординат – середн величини показників.


Рис.5. Графік змін стереологічних показників дистального відрізку сідничого нерва за умови спільної д магнітного поля та лазерного випромінення в інфрачервоному спектрі з частотою модуляції 37,5 Гц. По осі абсцис – терміни досліджень, по осі ординат – середн величини показників.

Деякі автори вважають, що регенерація ушкодженого нерва значно поліпшується при відкладеному шві. На думку інших, при цьому важко очікувати на хороші результати. Є також різні думки з приводу використання з метою стимуляції відновлення травмованого нерва як фармакологічних препаратів, так і фізіотерапевтичних засобів. Постійно з’являються нові методи, які пропонуються для лікування пошкоджених нервів. У зв’язку з цим ми вирішили дослідити дію нового апарату “МІТ-11”, який забезпечує частотно модульоване лазерне випромінення у магнітному полі (ЧМ МЛТ).

При оцінці ефекту застосування методу ЧМ МЛТ, у першу чергу слід зазначити значний нормалізуючий його вплив на реологічні та коагуляційні показники крові, а також на структурн елементи мембрани живих клітин зі зміною їх проникності для найважливіших іонів (Ca2+, K+, Na+ та ін.).

За даними Н.І. Самосюк (2004р.), застосування ЧМ МЛТ разом з медикаментозною терапією вже на 5-7 добу призводило до достовірного покращення індексу агрегації тромбоцитів з 58,7±1,4 до 39,7±1,8, індексу агрегації еритроцитів з 13,4±0,25 до 9,9±0,3 та спонтанного фібринолізу з 12,7±0,7 до 15,7±0,68.

Дані, отриман нами при імпрегнації регенеруючого нерва нітратом срібла, свідчать, що у тварин, яким проводили ЧМ МЛТ в інфрачервоному діапазоні спектра з частотою модуляц 37,5 Гц у ділянці проксимального відрізка невротизація відбувається швидше більш рівномірно, а новоутворені аксони проникають у дистальний відрізок у значно коротший термін.

При проведенн ультрамікроскопічного дослідження периферійного відрізку нерва було виявлено, що у тварин 5 групи поряд з нервовими волокнами, які формуються, з’являються мієлінові волокна з повністю сформованою мієліновою оболонкою та наявністю чисельних мітохондрій, нейротрубочок та нейрофібрил у аксоплазмі. Виникнення великої кількості новоутворених мієлінових волокон, на нашу думку, результатом активності метаболічного апарату клітин Шванна. Досить значна кількість мітохондрій, що виявляється при цьому, має добре розвинуті кристи, між якими знаходиться електроннощільний матрикс. Слід відзначити також аутолітичну функцію нейролемоцитів, на що вказує наявність в їх цитоплазм численних лізосом та фаголізосом, які накопичують ліпідні включення.

Проведений морфометричний аналіз свідчить, що в групах тварин, яким проводилась ЧМ МЛТ, кількість нервових волокон перевищує аналогічні показники у контрольній груп тварин. При чому, проявляється це найбільше у тварин 5 групи, яким проводилась МЛТ у інфрачервоному спектрі з частотою модуляції 37,5 Гц. Збільшення об’єму відбувається, в основному, за рахунок підвищення їх кількості, тоді як розміри не проявляють такої вираженої різниці. Водночас аналіз розподілу типів волокон за площею свідчить про суттєву різницю у співвідношенні волокон за розмірами, а саме: у контрольній групі переважну більшість становлять дрібні волокна, в той час, як у групах 2, 3, 4, 5 поступово з’являються волокна середнього та крупного діаметру, кількість яких у тварин 5 групи переважає (рис.6,7,8). Разом з тим, кількість товстих мієлінових волокон і збільшення кількості середніх у групах тварин, яким проводилась МЛТ, свідчить про їх більш швидке відновлення, а саме: співвідношення дрібних, середніх та великих за розмірами волокон в групах з МЛТ перевищує такі ж показники у тварин контрольної групи. Ц результати вказують на те, що у тварин, яким після невротомії проводилась МЛТ, процеси регенерації пошкодженого нерва відбувались значно краще, особливо у тварин 5 групи.


Рис.6. Розподіл мієлінових волокон залежно від значень площ їх поперечних зрізів у контрольній групі. По ос абсцис – терміни досліджень, по осі ординат – кількість волокон у %


Рис.7. Розподіл мієлінових волокон залежно від значень площ їх поперечних зрізів у динаміці експерименту за умови спільної дії магнітного поля та лазерного випромінення у червоному спектрі з частотою модуляції 37,5 Гц.



Рис.8. Розподіл мієлінових волокон залежно від значень площ їх поперечних зрізів у динаміці експерименту за умови спільної дії магнітного поля та лазерного випромінення в інфрачервоному спектр з частотою модуляції 37,5 Гц.

Таким чином, ми прийшли до висновку, що використання ЧМ МЛТ позитивно впливає на процеси регенерації у пошкодженому нерві, причому в усіх його відділах (проксимальному, регенераційній невромі, дистальному). У зв’язку з цим, цей метод можна рекомендувати для комплексного лікування пошкоджених нервів. Крім цього, у подальших дослідженнях можна вивчити вплив МЛТ на біологічні точки, пов’язані з пошкодженим нервом та на сегменти спинного мозку, які зв’язані з цим нервом.


ВИСНОВКИ

У дисертац наведено теоретичне узагальнення та нове рішення наукової задачі, яка полягає у з’ясуванні закономірностей невротизації та мієлінізації у травмованому нерві за умов проведення на ділянку пошкодження частотно-модульовано магнітолазеротерапії у червоному та інфрачервоному спектрі з частотою модуляц 9,4 Гц та 37,5 Гц.

1.         У тварин, яким після перетинання нерва проводилось зшивання його кінців без проведення МЛТ, відновлення сідничого нерва відбувається повільніше, ніж у групах тварин з використанням МЛТ. Це характеризується достовірно меншим об’ємом та кількістю мієлінових нервових волокон в одиниці об’єму нерва.

2.         Використання МЛТ у червоному спектрі з частотою модуляції 9,4 Гц з метою стимуляц регенерації пошкодженого нерва показало, що зміни, які при цьому відбуваються, практично не відрізняються від таких у контрольній групі тварин. Звертає лише увагу на себе деяке (хоча статистично недостовірне) збільшення морфометричних показників.

3.         Дослідження, проведені у групі тварин, яким після операції проводилась МЛТ у червоному спектрі з частотою модуляції 37,5 Гц, вказують на деякі позитивні зміни при регенерації у порівнянні з попередньою групою тварин. Однак, слід зазначити, що ступінь цих змін не є таким, який може забезпечити достатню компенсацію наслідків травми нерва.

4.         У тварин, яким після операції проводили МЛТ в інфрачервоному діапазоні спектра з частотою модуляції 9,4 Гц спостерігаються кращі результати щодо регенерації пошкодженого нерва, ніж у тварин, яким проводилась МЛТ в червоному діапазоні спектра. Це характеризується більшим об’ємом та кількістю мієлінових нервових волокон в одиниці об’єму нерва, більшою кількістю крупних за діаметром мієлінових нервових волокон.

5.         Найбільш позитивну дію МЛТ на регенерацію пошкодженого нерва було виявлено при використанні інфрачервоного спектру з частотою модуляції 37,5 Гц, що характеризується достовірно більшим об’ємом та кількістю мієлінових нервових волокон в одиниці об’єму нерва, достовірно більшою кількістю крупних за діаметром мієлінових нервових волокон.

6.         Отриман результати свідчать про те, що застосування МЛТ після травми нерва покращу результати відновлення останнього, що розширює уявлення про можливост використання фізичних методів для стимуляції регенерації пошкоджених нервів.

7.         Покращення показників, які характеризують регенерацію пошкодженого нерва під впливом МЛТ, дозволять застосовувати цей метод у клінічній практиці з метою прискорення мієлінізації ушкоджених нервів та розробляти нові підходи для використання цього методу.


СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

1.       Д.В. Раскалєй, Т.П. Куфтирєва. Морфологічна характеристика відновлення пошкодженого сідничого нерва під впливом магнітолазеротерапії//Вісник проблем біолог медицини. – 2006. – випуск 2. – С.282-285. (Пошукачем виконані експериментальн операції і проведена МЛТ. Здійснене забарвлення напівтонких зрізів, проведено аналіз отриманих морфометричних даних та їх статистичне опрацювання, підготовлена до друку стаття. )

2.       Раскалєй Д.В., Стеченко Л.О. Ультраструктурні зміни пошкодженого нерва в умовах д магнітного поля та лазерного випромінення з різною частотою модуляції// Вісник наукових досліджень. – 2006. – №3. – С.21-24.(Пошукачем проведений аналіз електронограм, пошук літератури за темою та оформлення матеріалів.)

3.        Д.В. Раскалєй, Г.І.Козак. Ультраструктурні особливості будови дистального відрізку пошкодженого нерва в умовах дії магнітного поля та лазерного випромінення у червоному спектрі з різною частотою модуляції//Таврический медико-биологический вестник. – 2006. – Т.9. - №3. – С. 149-153. (Пошукачем проведений аналіз електронограм, аналіз одержаних результатів, підготовлена стаття до друку.)

4.       Д.В. Раскалєй, О.М. Грабовий. Морфологічні особливості регенерації пошкодженого нерва, яка відбувається під впливом магнітолазерного опромінення//Вісник наукових досліджень. – 2007. - №1. – С.111-113. (Пошукачем здійснена мпрегнація зрізів пошкоджених нервів, проведено пошук літератури за темою та аналіз результатів, підготовлена стаття до друку.)

5.        Пат. 10757 UA 7 A61N5/067,G09B23/28. Спосіб лікування пошкоджень периферійних нервів в експерименті//Раскалєй Д.В., Чайковський Ю.Б.; НМУ ім. О.О.Богомольця. - №200505890; Заявл. 15.06.2005; Опубл. 15.11.2005.//Промислова власність. Бюлетень. – 2005. - №11. – С.3.28.1. (Пошукачем виконан експериментальні операції та розроблена методика лікування пошкоджених нервів.)

6.       Raskalyey D.V., Sokurenko L. М.Peripheral nerve regeneration after neurorhaphy and magnetolaser stimulation // 13th Annual International Ain Shams Medical Students’ Congress, Cairo, Egypt. – 2005. – С.67. (Пошукачем самостійно проаналізована література, проведений аналіз отриманих даних.)

7.     Раскалєй Д.В. Регенерація нервових волокон під дією магнітного поля та лазерного випромінення з різною частотою модуляції//Міжнародна науково-практична конференція студентів, молодих вчених, лікарів та викладачів “Актуальні питання експериментальної та клінічно медицини”, присвячена Дню науки в Україні. – С.53 – 54.

8.     Раскалєй Д.В., Раскалєй В.Б., Чайковський Ю.Б. Вплив магнітолазеротерапії на мікроскопічні та ультрамікроскопічні процеси у периферійному нерві після його пошкодження//Збірник матеріалів науково-практичної конференції “Досвід проблеми застосування сучасних морфологічних методів досліджень органів тканин у нормі та при діагностиці патологічних процесів”. – Тернопіль, 2007. С.73 – 75. (Пошукачем проведена імпрегнація досліджуваного матеріалу, проаналізовані електронограми, здійснено узагальнення усіх даних та оформлення результатів.).


АНОТАЦІЯ

Раскалєй Д.В. Морфологічна характеристика впливу магнітного поля та лазерного опромінення на регенерацію периферійного нерва. – Рукопис.

Дисертація на здобуття наукового ступеня кандидата медичних наук за спеціальністю 14.03.09 гістологія, цитологія, ембріологія. – Національний медичний університет імен О.О. Богомольця МОЗ України, Київ, 2008.

Дисертація присвячена вивченню можливості стимуляції регенерації пошкоджених периферійних нервів в умовах спільної дії частотно-модульованого магнітного поля та лазерного опромінення у різні терміни після травми. Відновлення функц пошкоджених нервів залежить від швидкості регенерації нервових волокон, відновлення повноцінної інервації тканин, можливості розвитку в рані запального процесу.

Під час проведення дослідження було доведено перспективність і доцільність комплексного застосування магнітолазеротерапії (МЛТ) у лікуванні пошкоджених нервів.

В експеримент було вивчено вплив на регенерацію периферійного нерва частотно-модульованого магнітного поля та оптичного потоку в різних діапазонах спектру (червоному та нфрачервоному) при частоті модуляції 9,4 та 37,5 Гц. У роботі було використан нейрогістологічні, загальногістологічні, електронномікроскопічні та морфометричн методи дослідження, які дозволили вивчити реактивні зміни під час регенерац сідничого нерва.

Дослідження проводились на базі кафедри гістології та ембріології НМУ імені О.О. Богомольця. Використовувались апарат для фізіотерапії комбінований “МІТ-11” вітчизняного виробництва, цифрова фотокамера та мікроскоп “Oлімпус”, ультратом LKB-8800 (Швеція), електронний мікроскоп ЕМВ 125К.

Об’єктом дослідження був сідничий нерв після невротомії з наступним зшиванням із застосуванням МЛТ та без її застосування. Матеріал забирався через 3, 6 та 12 тижнів після операції без використання та з використанням магнітолазеротерапії. Вперше було досліджено вплив частотно-модульованої магнітолазерної дії на регенерацію периферійного нерва встановлено, що використання МЛТ в інфрачервоному діапазоні спектру з частотою модуляції 37,5 Гц дало найкращі результати.

Отримані дані можуть бути використані для оптимізації способів лікування пошкоджених нервів.

Ключові слова : магнітолазеротерапія, дегенерація, регенерація, нервові волокна, інфрачервоний діапазон спектру.


АННОТАЦИЯ

Раскалей Д.В. Морфологическая характеристика влияния магнитного поля и лазерного облучения на регенерацию периферического нерва. – Рукопись.

Диссертация на соискание учёной степени кандидата медицинских наук по специальности 14.03.09 гистология, цитология, эмбриология. – Национальный медицинский университет имени А.А. Богомольца МЗ Украины, Киев, 2008.

Диссертация посвящена изучению возможности стимуляции регенерации поврежденных периферийных нервов в условиях общего действия частотно модулируемого магнитного поля и лазерного облучения в разные сроки после травмы. Восстановление функции поврежденных нервов зависит от скорости регенерации нервных волокон, возобновления полноценной иннервации тканей, возможности развития в ране воспалительного процесса. Во время проведения исследования были доказаны перспективность и целесообразность комплексного применения магнитолазеротерапии (МЛТ) в лечении поврежденных нервов.

В эксперименте было изучено влияние на регенерацию периферического нерва частотномодулируемого магнитного поля и оптического потока в разных диапазонах спектра (красном и инфракрасном) при частоте модуляции 9,4 и 37,5 Гц.

В работе были использованы нейрогистологические, общегистологические, электронномикроскопические и морфометрические методы исследования, которые позволили изучить реактивные изменения во время регенерации седалищного нерва. Исследования проводились на базе кафедры гистологии и эмбриологии НМУ имени А.А. Богомольца. Использовались аппарат для физиотерапии комбинированный “МИТ-11” отечественного производства, цифровая фотокамера и микроскоп “Oлимпус”, ультратом LKB-8800 (Швеция), электронный микроскоп ЕМВ 125К.

Объектом исследования был седалищный нерв после невротомии с последующим сшиванием с применением МЛТ и без таковой. Материал забирался через 3, 6 та 12 недель после операции. Впервые было исследовано влияние частотно-модулированного магнитолазерного действия на регенерацию периферического нерва. Показано, что МЛТ в инфракрасном диапазоне спектра с частотой модуляции 37,5 Гц дало наилучшие результаты.

Полученные данные могут быть использованы для оптимизации способов лечения поврежденных нервов.

Ключевые слова: магнитолазеротерапия, дегенерация, регенерация, нервные волокна, инфракрасный диапазон спектра.


SUMMARY

Raskalyey D.V. Morphological description of influencing of the magnetic field and laser irradiation on the regeneration of peripheral nerve. A Manuscript.

Thesis for a candidate’s degree of medical sciences in speciality 14.03.09 – histology, cytology, embryology. – National О.О. Bogomolets medical university, Kyiv, 2008.

The thesis is devoted to the study of dynamics in repair processes of preliminarily cut and sutured sciatic nerves in experiments on white rats. A research purpose is based on the increasing efficiency of treatment of the damaged peripheral nerve by the action of the frequency-modulated magnetic field and laser radiation. It was shown that influence of magnetic field and laser radiation in the infrared diapason with the modulation frequency of 37.5 Hz tends to shorten the period of regeneration in the distal length of the nerve. Secondary regeneration of the nerve fibers proceeds more intensively.

Thus, the results of the study can be applied in medicine to achieve better results in the treatment of damaged peripheral nerves.

Key words: magnetic-laser therapy, degeneration, regeneration, nerve fiber, infrared spectrum diapason.


Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.