скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Молекулы генетического аппарата

Не все ДНК in vivo являются двухцепочечными. Геномы некоторых мелких вирусов бактерий, растений и животных представляют собой ковалентно замкнутые кольца, состоящие только из одной цепи. Все известные одноцепочечные кольцевые ДНК относительно малы: ДНК бактериофагов фХ174 и М13 содержат примерно 5300 и 6000 нуклеотидов соответственно и имеют длину 1,5-2 мкм; длина молекул ДНК парвовирусов животных и некоторых вирусов растений составляет 2/3 и 1/2 указанных величин соответственно. Однако для репликации любой из этих вирусных ДНК совершенно необходимо превращение одноцепочечного кольца в соответствующее двухцепочечное, из которого затем образуются одноцепочечные кольцевые ДНК вирусного потомства. Более того, экспрессия генетической информации в таких геномах всегда осуществляется в фазе двухцепочечной ДНК, поскольку именно она является субстратом для транскрипции последовательности ДНК в РНК.

е. Денатурация и ренатурация ДНК

Водородные связи и межплоскостные взаимодействия, стабилизирующие двойную спираль, достаточно слабы, и при относительно небольших воздействиях происходит разделение цепей - процесс, именуемый денатурацией, или плавлением. Двухцепочечная спиральная ДНК в растворе легко разрушается при нагревании до температур, близких к 100°С. Денатурация происходит также при увеличении рН раствора до уровня, при котором разрушаются водородные связи между основаниями. Многие факторы влияют на денатурацию, нейтрализуя частично или полностью отрицательно заряженные фосфатные группы остова молекулы. Интервал значений температуры или рН, при которых происходит разделение цепей, очень невелик. Поскольку для разрушения двух водородных связей АТ-пар требуется меньше энергии, чем для разрыва трех водородных связей GС-пар, значения температуры и рН, при которых происходит денатурация, зависят от нуклеотидного состава ДНК. Чем выше содержание GС-пар, тем выше Тт или рНт.

Денатурация - процесс обратимый, последующее восстановление двухцепочечной структуры ДНК может происходить даже при полном расхождении цепей. Процесс воссоединения, называемый ренатурацией, реассоциацией или отжигом, происходит при понижении температуры или рН. Если температура или рН понижаются постепенно, то цепи соединяются правильно, с восстановлением всех исходных пар оснований. При резком понижении температуры или рН правильное воссоединение комплементарных цепей затрудняется из-за спаривания оснований локально комплементарных участков в пределах одной или разных цепей. Диссоциация и реассоциация ДНК в растворе являются по сути искусственным воссозданием процессов, играющих ключевую роль в реализации разнообразных биологических функций in vivo. Очень важным для дальнейшего изложения представляется то, что способность двух отдельных комплементарных цепей нуклеиновой кислоты воссоединяться с образованием исходной структуры является ключевым моментом для проведения соответствующих опытов in vitro, а также для выделения, сравнения и идентификации специфических нуклеиновых кислот. Уникальная способность нуклеиновой кислоты образовывать двойные спирали путем ассоциации одиночных комплементарных цепей имеет огромное значение для самых разных областей генетики.

ж. Упаковка ДНК в хромосомах

В клетках или вирусах ДНК, по-видимому, никогда не находится в свободной, вытянутой форме. Она связана с низкомолекулярными катионами - ионами двухвалентных металлов либо с ди- и полиаминами или белками, а возможно, с теми и с другими. Взаимодействие осуществляется с помощью электростатических сил - отрицательно заряженные фосфатные группы частично нейтрализуются положительно заряженными ионами металлов и полиаминами или основными аминокислотными остатками белков. В результате таких взаимодействий происходит конденсация ДНК с уменьшением объема, занимаемого молекулой, иногда в тысячу раз. Кольцевая ДНК Е. coli длиной 1,4 мм заключена в клетку, имеющую форму палочки диаметром 1 мкм и длиной 2 мкм; у эукариотических клеток ядерная ДНК длиной почти 2 м в стадии интерфазы заключена в ядре диаметром менее 10 мкм. Ядерная ДНК в клетках, находящихся в стадии митоза, конденсирована еще больше и в световом микроскопе имеет вид очень компактной структуры.

Хромосомы эукариот. Хромосомы эукариотических клеток состоят в основном из хроматина - комплекса двухцепочечной ДНК и пяти гистоновых белков, обозначаемых H1, Н2А, Н2В, Н3 и Н4. Гистоны могут быть ацетилированы, метилированы, фосфорилированы, ро1у-рибо-зилированы, а гистоны Н2А и Н2В - ковалентно связаны с белком, называемым убиквитином. Какова роль воздействия указанных компонентов на структуру и функции гистонов - до конца не выяснено.

Типичные характеристики гистонов млекопитающих

Тип Число амино­кислот

Мол. масса.

кДа

Число основных амино­кислот Отно­шение Lys/ /Arg Число кислых амино­кислот

Гистон H1 млекопитающих состоит из примерно 215 аминокислот; размеры других гистонов варьируют от 100 до 135 аминокислот. Все они содержат необычно большое количество положительно заряженной аминокислоты лизина; Н3 и Н4 отличаются от других тем, что у них достаточно высок уровень положительно заряженной аминокислоты аргинина. Соотношение между Н2А, Н2В, Н3 и Н4, содержащимися в хроматине низших эукариот, такое же, как в хроматине млекопитающих.

На электронно-микроскопических фотографиях в зависимости от условий выделения и степени растяжения хроматин выглядит либо как длинное волокно диаметром 10 нм, либо чаще как более вытянутое волокно с утолщениями - "бусинками" диаметром 10 нм, нанизанными по всей длине волокна с определенными интервалами. Каждая из этих бусинок представляет собой нуклеосомный кор, на который намотан сегмент хромосомной ДНК длиной 145 пар оснований. Кор - это гистоновый октамер, состоящий из гистонов Н2А, Н2В, Н3 и Н4, по две молекулы каждого вида. Молекула ДНК, обвиваясь 13/4 раза вокруг нуклеосомного кора, образует сверхспираль.

Пятый гистон, H1, не входит в состав нуклеосомного кора и не участвует в процессе наматывания ДНК на гистоновый октамер. Он контактирует с ДНК в тех местах, где двойная спираль входит и выходит из нуклеосомного кора. В такой структуре с одним гистоновым октамером и молекулой гистона H1 ассоциированы 168 пар оснований спиральной ДНК. Как мы уже отмечали, на электронно-микроскопических фотографиях хроматин часто обнаруживается в двух альтернативных формах: в форме волокна с четко разделенными нуклеосомами или в форме волокна диаметром 10 нм, в котором нуклеосомы упакованы бок о бок по всей его длине. Волокно диаметром 10 нм может подвергаться дальнейшей конденсации с образованием структур более высокого порядка. При этом нуклеосомы, по всей видимости, образуют соленоид - структуру диаметром 30 нм.

В результате взаимодействия ДНК с гистонами сегмент двойной спирали ДНК из 168 пар оснований со средним диаметром 2 нм и длиной 57 нм превращается в спираль диаметром 10 нм и длиной 5 нм. При последующем сжатии этой спирали до волокна диаметром 30 нм степень конденсации увеличивается еще в шесть раз. Таким образом, упаковка дуплекса ДНК с пятью гистонами приводит к 50-кратной конденсации ДНК. Однако даже столь высокая степень конденсации не может объяснить почти 5000-кратное уплотнение ДНК в метафазной хромосоме.

Эукариотический хроматин содержит и другие белки, которые обычно называют негистоновыми. Некоторые из них, например ферменты, необходимые для репликации и экспрессии ДНК, могут связываться с хроматином временно. Белки, принимающие участие в различных процессах регуляции, связываются с ДНК только в специфических тканях или на определенных стадиях дифференциации.

Хромосомы прокариот. Насколько известно, в упаковке прокариотической геномной ДНК участвуют только два или три белка. О природе взаимодействия этих белков с ДНК и о структуре конденсированного комплекса белок-нуклеиновая кислота известно немного. У Е. coli, по-видимому, существует лишь один белок или один класс ДНК-связывающих белков, называемых HU-белками; по своему размеру, содержанию лизина и аргинина, антигенным свойствам они сходны с эукариотическим гистоном Н2А. Другой белок, белок II, обнаруженный у Е. coli и цианобактерий, по повышенному содержанию лизина и ДНК-связывающим свойствам также напоминает эукариотический гистон.

Некоторые основные РНК

Тип РНК

Приблизительное число разных видов

в клетках

Приблизительная длина (число нук-леотидов) Рас-про-странен-ность"
Транспортная РНК 80-100 75-90 П, Э
(тРНК)
Рибосомная 5S-PHK 1-2 120 П, Э
(рРНК)
Рибосомная 5,8S-PHK 1 155 Э
(рРНК)
Рибосомная 16S-PHK 1 1600 П
(рРНК)
Рибосомная 23S-PHK 1 3200 П
(рРНК)
Рибосомная 18S-PHK 1 1900 Э
(рРНК)
Рибосомная 28S-PHK 1 5000 Э
(рРНК)
Матричная РНК (мРНК) Тысячи Варьирует П, Э
Гетерогенная ядерная » » Э
РНК (гяРНК)
Малая цитоплазмати- Десятки 90-330 П, Э
ческая РНК (мцРНК)
Малая ядерная РНК » 58-220 Э
(мяРНК)

Белки HU и II обнаружены в количествах, достаточных для образования комплекса по крайней мере с половиной ДНК Е. coli и, по-видимому, совместно с полиаминами и еще неизвестными нам белками могут осуществлять те же самые функции при конденсации и упаковке ДНК, что и пять эукариотических гистонов.


2. Структура и поведение РНК

а. Типы РНК и их распространенность

Содержание РНК в любых клетках в 5-10 раз превышает содержание ДНК. Основная роль РНК состоит в трансляции генетической информации с образованием белков. Однако молекулы РНК принимают участие и в осуществлении некоторых специализированных эндонуклеазных функций, возможно регулирующих различные этапы экспрессии генов. Молекулами РНК представлены геномы некоторых вирусов.

Во всех клетках присутствуют следующие виды РНК: рибосомная РНК, транспортная РНК и информационная, или матричная, РНК. Большинство клеток содержат также много других малых цитоплазматических РНК, а в клетках эукариот присутствует еще и множество малых ядерных РНК. Около 80% массы клеточных РНК составляют три или четыре вида рРНК, а около 15% - почти 100 видов тРНК. На долю нескольких тысяч различных матричных РНК приходится менее 5% клеточной РНК, а на долю малых ядерной и цитоплазматической РНК, число видов которых пока неизвестно, - менее 2% от общего количества.

б. Компоненты молекулы РНК и соединяющие их химические связи

РНК - это полинуклеотид длиной от 70 мономерных единиц у некоторых тРНК до 10000 и более у некоторых мРНК. Два пурина и один пиримидин входят также в состав ДНК. А вместо тимина в РНК входит урацил, у которого 5-метильная группа отсутствует. Нуклеотиды в молекуле РНК соединены в цепочку такими же 5'-3'-фосфодиэфирными связями, как и в ДНК. Из-за наличия 2'-ОН-группы связь Р-О чувствительна к действию щелочей и ферментов, расщепляющих РНК.

Некоторые пурины и пиримидины в РНК модифицированы: они содержат метил-, тиол-, водород-и изопентенил-заместители. В РНК присутствуют 2'-О-метилнуклеотиды с модифицированным остатком рибозы, а также может наблюдаться иной способ связывания между урацилом и рибозой. Такие модифицированные нуклеотиды довольно редко встречаются в рРНК и мРНК и достаточно часто - в тРНК. Как правило, модификация оснований и рибозных остатков происходит после завершения синтеза РНК, а не на стадии биосинтетических предшественников. Функциональное значение этого явления установлено лишь отчасти.

в. Структура РНК

Большинство клеточных РНК - одноцепочечные молекулы, хотя некоторые вирусные геномы представлены двухцепочечными РНК, напоминающими А-форму ДНК. В одиночных цепях все время образуются короткие внутримолекулярные двухцепочечные участки. Это связано с тем, что в большинстве РНК имеются небольшие комплементарные последовательности, которые спариваются и образуют петли. В таких двухцепочечных участках А спаривается с U, a G с С; G может образовать пару и с U, но GU-пара менее стабильна, чем стандартная пара GC, поскольку ее компоненты соединены двумя, а не тремя водородными связями. Двухцепочечные области, образованные подобным образом, обычно непротяженны и прерывисты, поскольку спаривающиеся участки редко бывают абсолютно комплементарными. Укладка большинства РНК может происходить более чем одним способом, однако биологическое значение образующихся при этом изомеров установлено только в некоторых случаях. Например, известно, что адекватная укладка некоторых вирусных РНК чрезвычайно важна для экспрессии генов, поскольку ответ на ключевые регу-ляторные сигналы зависит от конфигурации молекулы. Подобная зависимость функции от упаковки молекулы наилучшим образом продемонстрирована на примере тРНК. Несмотря на разную нуклеотидную последовательность, третичная структура разнообразных тРНК весьма сходна, и ее стабилизация, по-видимому, имеет огромное значение для функционирования этих молекул. Правильная терминация синтеза РНК и созревание транскрипта тоже часто зависят от характера укладки РНК.

г. Денатурация и ренатурация РНК

Как и в случае ДНК, двухцепочечные участки в РНК разрушаются при повышении температуры или рН, но, в отличие от ДНК, при высоких значениях рН в РНК разрушаются и фосфодиэфирные связи. Поскольку протяженность спирализованных участков в одноцепочечной РНК невелика, а сами спирали несовершенны, разрушаются они довольно легко. Однако полностью комплементарная двухцепочечная РНК плавится в довольно узком температурном интервале, как и двухцепочечная ДНК. В результате денатурации образуются две комплементарные одиночные цепи, способные к последующему воссоединению при плавном понижении температуры. После денатурации двухцепочечных участков одноцепочечной РНК восстановление тех же спаренных областей оказывается затрудненным, и в результате ренатурации могут образоваться структуры, отличные от исходной.

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.