скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыНаучная работа: Звуковой локатор

Увеличение сквозного тока коллектора DI’к.о (см. приложения, рисунок 12 «а») при повышении температуры приведет к увеличению падения напряжения на резисторе Кэ. Вследствие этого напряжение между точками 1 и 2 уменьшится, что при­ведет к уменьшению тока Iб в резисторе Rб , а также и в базе транзистора. Составляющая тока коллектора IK = Iбb при этом уменьшится. Зная, что пол­ный ток коллектора Iк состоит из двух составляющих

Iк=I’к.о.+Iб·b

можно сделать такой вывод: температурные изменения первого слагаемого (I’к.о) приведут к обратным по знаку изменениям второго слагаемого (Iб·b). При правильном выборе параметров схемы оба слагаемых в некоторой мере компенсируют друг друга так, что коллекторный ток транзистора при этом остается неизменным.

Усилитель это, пожалуй, самый простой «черный ящик». К тому же он чаще других встречается в кибернетических конструкциях.

Нигде обратная связь так широко не используется, как в радиоэлек­тронике.

Каждый из двух каскадов схемы «б» (см. приложения, рисунок 12) работает точно так же, как схема «а». Их работа стабилизируется отрицательной обратной связью за счет резисторов Rэ1 и Rэ2- Но этого оказалось недостаточно. За счет ре­зистора Ro.c оба каскада охвачены еще третьей обратной связью. Разберем, как она работает.

Допустим, по каким-либо причинам, включая повышение температуры, несколько возрос коллекторный ток транзистора T1.Тут же уменьшится на­пряжение между коллектором первого транзистора и общим проводом, и как следствие упадет ток базы второго транзистора. При этом коллекторный ток Т2 также уменьшится, что повлечет уменьшение падения напряжения на ре­зисторе Rэ2. Поскольку ток базы транзистора T1 в основном определяется этим напряжением, то он также уменьшится.

Кольцо обратной связи замкнулось, в результате чего коллекторный ток первого транзистора восстановит свое прежнее значение. В схеме «б» мы имеем дело с отрицательной обратной связью. Устойчивость работы схемы обеспечена.

За счет отрицательной обратной связи, охватывающей оба каскада Ro.c, схема «б» стабильно работает при изменении окружающей температуры от -10°С до +40°С. Общий коэффициент усиления равен 1000. По той же причине входное сопротивление усилителя повысилось с 500—1000 Ом до 1,5—2,0 кОм.

Кольцо обратной связи замкнулось, в результате чего коллекторный ток первого транзистора восстановит свое прежнее значение. В схеме «б» мы имеем дело с отрицательной обратной связью. Устойчивость работы схемы обеспечена.

За счет отрицательной обратной связи, охватывающей оба каскада Ro.c, схема «б» стабильно работает при изменении окружающей температуры от — 10°С до +40°С. Общий коэффициент усиления равен 1000. По той же причине входное сопротивление усилителя повысилось с 500—1000 Ом до 1,5—2,0 кОм.

Режим работы второго транзистора выбирается из условия, чтобы напря­жение между коллектором Т2 и общим проводом было равно половине пи­тающего напряжения. Это достигается подбором величины резистора Rэ1 в пределах 500—1000 Ом. Величина коллекторного напряжения первого транзистора не критична и может меняться в зависимости от b транзи­стора от 2 до 4 В.

Усилитель одинаково хорошо усиливает сигнал с частотами от 100 Гц до 10 кГц.

Очень интересна в работе схема «в» (см. приложения, рисунок 12). В литературе она назы­вается эмиттерным повторителем. На эмиттерном резисторе Rэ полностью повторяется входной сигнал с коэффициентом передачи, несколько меньшим единицы.

Тут же возникает вопрос: для чего нужна такая схема, если она не уси­ливает сигнала?

Эмиттерный повторитель — это каскад, имеющий большое входное сопро­тивление (несколько сотен килоом) и очень малое выходное сопротивление, равное 5—20 Ом. Это, собственно, не усилитель, а трансформатор сопро­тивлений. Ставится он там, где нужно в схеме иметь низкоомный выход и высокоомный вход.

Входное сопротивление эмиттерного повторителя примерно равно Rвх»Rэ·b. Сопротивление Rэ рекомендуется брать в пределах 1—4,7 кОм, a b = 20—50. При этом Rвх будет лежать в пределах 20—250 кОм.

Ни в одной другой схеме нет такой отрицательной обратной связи, как в эмиттерном повторителе. Здесь она равна 100%. Это значит, что весь сигнал с выхода схемы полностью прикладывается к ее входу. Схема рабо­тает очень стабильно. Разберите схему обратной связи самостоятельно. Необходимый опыт у вас теперь есть.

Рассмотрев работу всех трех схем, «а», «б» и «в» (см. приложения, рисунок 12), можно сде­лать следующий вывод: отрицательная обратная связь всегда повышает устойчивость работы аппаратуры. Этого никогда не следует забывать, и надо стараться как можно чаще ею пользоваться.

Рассказывая об использовании обратной связи в радиоэлектронных схе­мах, следует напомнить о генераторах синусоидальных колебаний. Без них теперь не обходится ни радиопередатчик, ни радиоприемник. Схема, пока­занная на рисунке 3, г, есть генератор звуковых частот. Ее подробный раз­бор будет дан при описании платы «детектор — звуковой генератор».

Изготовление платы «усилитель сигнала» (см. приложения, рисунок 11) начинается с основа­ния. Вырезается оно из куска гетинакса или текстолита толщиной 2,0—2,5 мм. Размеры берутся из рисунка 13 (см. приложения). Монтажными стойками служат кусочки медной проволоки (гвоздики) толщиной 1 мм, вставленные в отверстия платы, залитые на рисунке черной краской.

Данные деталей берутся из электрической схемы. Резистор R5 пока не ставить. Сделать это при на­лаживании схемы.

Транзисторы T1 —T3 перед установкой в схему проверяются на тестере. Коэф­фициент усиления должен находиться в пределах 50—100. Подойдут не только транзисторы, указанные на схеме, но и П13 —П16.

Налаживание платы сводится к подбору резистора R5. Временно ставится вместо него переменный резистор 1,5—2,2 кОм. Нужно подобрать величину так, чтобы вольтметр постоянного тока, подключенный параллельно R8, показы­вал 4,5 В. Далее переменный резистор заменяется постоянным. Его ве­личина должна быть равна сопротивлению переменного резистора, заме­ренному на омметре.

Для окончательной проверки работы схемы на вход усилителя (точки 2—3) от любого звукового генератора подаётся сигнал в 1 мВ с частотой 1000 Гц.

Движок переменного резистора R3 поставьте в крайнее верхнее положение. На выходе (точки 6—7) вольтметр переменного тока должен показать не менее 1 В.

Разделив показания прибора на 1 мВ, вы получите величину коэффициента усиления усилителя. Как уже говорилось, он не должен быть меньше 1000. В крайнем нижнем положении движка резистора R3 вольтметр покажет отсутствие сигнала.

Усилитель мощности

Не всегда от усилителя требуется, чтобы он усиливал сигнал по напряжению. Иногда как раз все наоборот, на вход по­дается сигнал, больший по амплитуде, чем снимается с выхода.

Значит, такой усилитель вовсе не усиливает? Нет, усиливает. Только усиливает он сигнал не по напряжению, а по мощности. На вход его по­ступает сигнал незначительной мощности, ну, скажем, в несколько микро­ватт (мкВт), а с выхода снимаются сотни милливатт (мВт), а то и целые ватты (Вт).

Выходная мощность нашего усилителя (см. приложения, рисунок 14) составляет 0,2—0,25 Вт. Питается схема от любого источника постоянного тока напряжением 9—12 В. Одним из вариантов питания являются две последовательно соединенные ба­тареи от карманного фонаря типа 3336Л.

Усилитель потребляет ток 30—35 мА в режиме максимальной мощности. Выход усилителя рассчитан на работу с электродинамическим громкогово­рителем, имеющим сопротивление звуковой катушки 6—10 Ом. Нам подой­дут малогабаритные громкоговорители типа 0,1 ГД, 0,15ГД, 0,2ГД и 0,25ГД. Входное сопротивление усилителя составляет 2 кОм. Чувствительность, со­ответствующая номинальной мощности, равна 0,2—0,3 В.

Схема (см. приложения, рисунок 14) имеет один каскад предварительного усиления напряже­ния на транзисторе Т1 и выходной двухтактный каскад, работающий в ре­жиме класса В на транзисторах Т2 и Т3.

Выбранная схема выходного каскада делает усилитель очень экономич­ным по питанию. Транзисторы Т2 и Т3 работают при токе покоя коллектора в несколько миллиампер. Когда на схему не подается никакого сигнала, ток коллектора Т2 и Т3 равен 1—2 мА.

Пожалуй, самыми ответственными деталями усилителя являются транс­форматоры Тр1 и Тр2. При их изготовлении нужно быть особенно вниматель­ными. Лучше всего купить их в магазине. Междукаскадный трансформатор и выходной трансформатор — от карманных приемников «Гауя», «Селга», «Сокол», «Альпинист», «Атмосфера» или «Юпитер». Мож­но использовать и другие типы трансформаторов от малогабаритных прием­ников, лишь бы их намоточные данные были близки к приводимым ниже.

Самодельный междукаскадный трансформатор Тр1 выполнен на сердеч­нике из пермаллоевых пластин Ш-6 или Ш-8, толщина набора —6 мм. Пер­вичная обмотка содержит 2000 витков провода ПЭ 0,1. Вторичная обмотка состоит из двух секций по 500 витков провода ПЭ 0,1 в каждой.

Выходной трансформатор Тр2 собирается на таком же сердечнике, что и междукаскадный. Первичная обмотка содержит две секции по 400 витков провода ПЭ 0,14. Вторичная обмотка имеет 100 витков провода ПЭ 0,35. Когда трансформаторы полностью собраны, проверьте их обмотки на обрыв.

Данные остальных деталей усилителя мощности приведены на рисун­ке 9. Транзисторы Т1—Т3 перед тем, как впаивать в схему, обязательно про­верьте на тестере. Нам подойдут транзисторы с коэффициентом усиления от 30 до 60. Обратите обязательно внимание на начальный ток коллектора Iк.н. Отберите те транзисторы, у которых Iк.н. не превышает 5 мкА.

Вся электрическая схема, включая два трансформатора, монтируется на гетинаксовой или текстолитовой плате размером 120X80 мм, толщиной 2,0—2,5 мм.

По рисунку 6, а на плате произведите разметку отверстий. Те из них, что залиты краской, просверлите сверлом диаметром 1 мм. Затем во все миллиметровые отверстия вставьте кусочки медного провода (гвоздики) диаметром 1 мм и длиной 10 мм.

Расположение деталей на плате и сам монтаж сделайте строго по ри­сунку 15, б (см. приложения). Особенно внимательны будьте при распайке выводных концов трансформаторов. Напутаете в их подключении, усилитель работать не будет. Отыскать такую ошибку бывает трудно даже опытному инженеру, в распоряжении которого имеется вся необходимая измерительная аппа­ратура.

Наладка схемы сводится в первую очередь к проверке монтажа. Необ­ходимо тщательно проверить распайку выводов транзисторов. При этом же­лательно убедиться в правильности номинальных значений резисторов. Кто из вас не имеет еще достаточного опыта, именно в этом чаще всего допу­скает ошибки. Если ошибочно впаяна деталь с другим номиналом, отыскать неисправность бывает очень трудно.

Необходимо в этой схеме замерить мощность сигнала, подаваемого на громкоговоритель. Она и является выходной мощностью нашего уси­лителя.

Подайте на вход платы (см. приложения, точки 2 —3, рисунок 15) от звукового генератора переменное напряжение 0,2 В, частотой 1000 Гц. К точкам 6—7 подключите громкоговоритель нужного типа. Перемещая движок резистора R1 вверх, добейтесь максимальной громкости сигнала. Усилитель работает!

Любым вольтметром переменного тока измерьте напряжение сигнала, подаваемого на громкоговоритель (точки 6—7). Подсчет выходной мощ­ности производится по формуле:

где U — напряжение по прибору в вольтах, R — сопротивление  звуковой ка­тушки громкоговорителя в омах.

Предположим, что прибор покажет напряжение 1,5 В, а сопротивление звуковой катушки равно 10 Ом. Тогда мощность сигнала, подаваемого на

громкоговоритель, равна: 

В этом случае из громкогово­рителя должен раздаваться довольно громкий чистый звук.

Если полученная мощность окажется меньше 0,2 Вт, то следует подо­брать величину резистора R6. Эту операцию удобно проводить с помощью переменного резистора несколько большего номинала, нежели рекомендуе­мый. Последовательно с переменным резистором обязательно включите по­стоянный резистор в 2 — 3 кОм. Он предохранит транзисторы от случайной перегрузки большим током, который может возникнуть при выдвижении движка в сторону минимального значения.

Одновременно контролируется коллекторный ток обоих транзисторов. В режиме покоя, то есть при отсутствии входного сигнала, он не должен быть больше 1—2 мА. Миллиамперметр с током полного отклонения в 5 мА включается между средней точкой трансформатора Тр2 и проводом питания.

Как ни проста схема усилителя мощности, но и в ней не удается обойтись без обратной связи. Я уже говорил, в схемах радиоэлектроники они вас будут преследовать всюду, и к этому будьте всегда готовы. В рассматри­ваемой плате имеется одна отрицательная обратная связь за счет эмиттерного резистора R 4. Работа похожей схемы нами уже разбиралась. Такая связь не только стабилизирует работу первого каскада по температуре, но и увеличивает входное сопротивление до 4—5 кОм.


Звуковой генератор и детектор

Полная электрическая схема дана на рисунке 16 (см. приложения).

С первого взгляда любая схема кажется сложной и запутанной. Но этого не следует бояться, сложна она только вначале.

С чего начинать разбор электрической схемы неизвестного электронного устройства?

Вначале все устройство постарайтесь представить в виде «черного ящи­ка» и уясните, для чего он нужен, для решения каких задач предназначен. Заодно уточните сигналы, которые подаются на «ящик» и которые с него снимаются.

Как бы ни было сложно устройство, разобраться в нем поможет описа­ние блок-схемы машины.

Назначение блок-схемы — разбить машину на блоки (устройства) и рас­смотреть, как они взаимодействуют друг с другом.

А что значит на языке кибернетики «взаимодействуют друг с другом»? Это значит, какими сигналами обмениваются между собою отдельные устройства, какие сигналы подаются на их входы и какие снимаются с вы­ходов.

В нашем случае «черный ящик» — это плата звукового генератора и детектора. Разбирая блок-схему модели звукового локатора, вы должны были уяснить себе ее назначение. На вход платы (см. приложения, рисунок 16, точки 2—3) подается сигнал эха, который перед этим усиливается платой усилителя сигналов. Входной сигнал имеет вид прерывистых звуковых импульсов с частотой за­полнения около 5000 Гц.

Далее нам известно, что в плате имеется схема генератора звуковых ко­лебаний, которая генерирует только тогда, когда сигнал на входе отсутст­вует. При возвращении эха генератор тут же прекращает работать на время, пока сигнал не исчезнет. Сигнал звукового генератора, работающего все время вот в таком прерывистом режиме, и является выходным сигналом платы.

Больше о работе разбираемой платы вам пока ничего не известно. Но, оказывается, и того, что известно, вполне достаточно, чтобы самостоятельно составить электрическую схему внутренностей «черного ящика». Вариантов здесь будет, конечно, много. Каждый из вас захочет внести какие-либо «усовершенствования».

Разбирать работу незнакомой схемы советую всегда слева направо по направлению прохождения сигнала. Вы уже могли заметить, что вход схемы всегда чертится на рисунке слева, а выход — справа.

Как правило, если не все, то большинство каскадов вам всегда будет знакомо. Тогда остается разобраться во взаимодействии их друг с другом. Например, в плате рисунка 16 (см. приложения) первые два каскада вам долж­ны быть известны.

Каскад на транзисторе T1—это электрический фильтр. Работает он так же, как и электронное реле, с той лишь разницей, что реагирует только на сигнал со строго определен­ной частотой. Когда сигнал на вход каскада не подается или подается с ча­стотой, не равной частоте настройки фильтра, транзистор заперт.

Как вы думаете, почему в плате используется селективное электронное реле? То есть такое реле, которое реагирует на сигнал с определенной ча стотой, равной резонансной частоте контура L1C1.

С выхода первого каскада (см. приложения, рисунок 16) сигнал через резистор R4 поступает на эмиттерный повторитель, собранный на транзисторе Т2. Напряжение на его выходе полностью повторяет сигнал на входе.

Нагрузкой эмиттерного повторителя служит каскад на транзисторе Т3. Это и есть генератор звуковых частот. Когда транзистор T1 заперт, все на­пряжение питания платы через резисторы R 3 и R 4 прикладывается к базе транзистора Т2 и далее на схему генератора. В результате генератор генери­рует звуковые колебания. Когда транзистор T1 открыт — генератор не рабо­тает, напряжение на него не подается.

Генератор, генерировать... Как часто мы произносим эти слова. А что такое генератор?

Если обратиться к «Словарю радиолюбителя» С. Э. Хайкина (1966), то там сказано так: «Генератор — это прибор, генерирующий (создающий) электрические напряжения или токи». Кибернетику трудно согласиться с та­ким определением. На любое незнакомое устройство он смотрит как на «черный ящик» и старается прежде всего исследовать его входной и выход­ной сигналы.

Физика это положение тоже подтверждает. Из нее вы знаете, что перпе­туум мобиле невозможен!

Чтобы генератор генерировал, на него нужно подавать питающее напря­жение. Это и будет в конкретном случае входным сигналом разбираемого «черного ящика». Выходным сигналом является генерируемое переменное напряжение звуковой частоты. Если входной сигнал отсутствует, то есть если на схему генератора не подается питающего напряжения, то, естест­венно, выходной сигнал будет равен нулю.

Внутренности генератора могут быть самыми разными. Но во всех слу­чаях в схеме должен быть усилитель с коэффициентом усиления больше единицы, охваченный положительной обратной связью.

Разберем, как действует положительная обратная связь в схеме ри­сунка 16 (см. приложения).

Усилитель в схеме найти нетрудно. Он собран на транзисторе Т3. Его на­грузкой является колебательный контур L2, C3, С4. Подобный усилитель в ра­диотехнике называется резонансным усилителем. Ему не безразлично, какой сигнал усиливать. Если частота входного сигнала близка к резонансной частоте контура, коэффициент усиления резко возрастает. Для всех осталь­ных частот он может быть даже меньше единицы. Вот почему рассматри­ваемую схему еще называют селективным усилителем.

Цепь положительной обратной связи — это провод, идущий от конденса­торов С3—С4 к резистору R7. Поскольку используется селективный усили­тель, то схема будет генерировать сигнал только с частотой, равной резонанс­ной частоте контура L2, C3, С4. Это потому, что положительная обратная связь работает только на этой частоте. Перестройку частоты проще всего производить, изменяя индуктивность катушки сердечником подстройки.

В схеме генератора можно использовать и обычный усилитель, где на­грузкой является резистор. Но в этом случае условия генерации соблю­даются одновременно для большого числа гармонических сигналов с раз­личными частотами. Получится обычный мультивибратор, с работой кото­рого вы уже знакомы по второй главе.

На этом разбор схемы звукового генератора и детектора закончим.

Чертеж и монтажная схема даны на рисунке 8.

Катушки L1 и L2 намотайте, используя ферритовый броневой сердечник типа СБ-14 или ОБ-12. Число витков — 200—250, провод — ПЭ 0,1. 

Налаживание платы лучше начинать с генератора. Подайте на него от двух последовательно включенных батареек 3336Л необходимое напряже­ние и подбором резистора R5 добейтесь, чтобы схема генерировала. Под­ключите к точкам 6—7 высокоомные головные телефоны, и вы услышите довольно громкий писклявый тон. Генератор работает. Измерьте частоту выходного сигнала. Если она значительно отличается от 5000 Гц, то попро­буйте сердечником катушки L2 перестроить индуктивность. Когда и это не помогает, изменяйте число витков катушки.

Вторым настраивается селективное реле на транзисторе T1. Резонансная частота должна равняться ча­стоте сигнала генератора. В противном случае придется подстраивать кон­тур L1C1.

Для окончательной проверки платы восстановите схему и включите пи­тание. В телефонах, подключенных на выход (точки 6—7), вы услышите звук. Соедините коллектор транзистора Т1 с общим проводом питания, звук должен пропасть. Напряжение питания в этом случае на генератор не по­дается. Вот почему он замолчал.

Тот же результат вы получите, если точку 2 соедините с точкой 1. Тран­зистор T1 откроется, и, как результат, напряжение на его коллекторе упадет до нуля.

Испытания схемы подтвердят вам не только исправную работу всех трех каскадов, но и правильное их совместное функционирование. Ни одну плату, а тем более такую сложную, как эта, нельзя ставить в устройство без пред­варительной проверки.

Частотомер

Это прибор, на вход которого подается электрический сиг­нал неизвестной частоты напряжением 1—5 В. Частота определяется непо­средственно по стрелочному прибору, шкала которого размечена в герцах. И что самое ценное, в описываемом частотомере никакой предварительной градуировки не требуется. Все достигается расчетным путем с вполне доста­точной для нас точностью.

При использовании частотомера в модели звукового локатора шкалу удобнее разметить прямо в метрах до препятствия. Как перевести метры в герцы и наоборот, я уже писал в начале раздела.

Схема частотомера приведена на рисунке 18 (см. приложения). Принцип измерения осно­ван на заряде и разряде конденсатора С2. Проследим с самого начала, как все получается. Во-первых, это поможет понять работу прибора, а во-вто­рых, нам нужно вывести формулу, которая бы связала показания милли­амперметра с измеряемой частотой сигнала.

Измеряемый сигнал через конденсатор С1 и ограничительный резистор R2 поступает на базу транзистора T1. Посмотрите повнимательнее на схему: то, что нарисовано слева, — это самый обычный каскад усиления напряже­ния. Единственное, что может вас смутить, так это несколько необычная его нагрузка, состоящая из двух диодов Д1 и Д2 и стрелочного прибора.

Рабочая точка транзистора выбирается строго на середине линейного участка, что достигается соответствующим подбором резистора R1. В ре­зультате на выходе каскада на резисторе К3 имеем ограниченное с двух сто­рон переменное напряжение неизвестной частоты. Но это только тогда, когда величина входного сигнала превышает 1 В. Вот почему каждый раз перед определением частоты неизвестного сигнала требуется измерить его напряжение.

Когда транзистор T1 заперт, все напряжение источника питания прикла­дывается к конденсатору С2, последовательно включенному с диодом Д1 и миллиамперметром. Диод Д2 в этот момент заперт, так как включен в обрат­ном направлении. Конденсатор С2 будет заряжаться. Его зарядный ток, про­ходя по рамке прибора, вызовет отклонение стрелки, пропорциональное среднему значению проходящего тока.

 В тот момент, когда транзистор ti открыт, конденсатор С2 разряжается через диод Д2 и проходное сопротивление коллектор—эмиттер транзистора.

Постоянные времени цепей заряда и разряда выбраны таким образом, что при каждом цикле заряд — разряд конденсатор успевает зарядиться до напряжения источника питания и разрядиться до нуля. Поэтому можно считать, что полный заряд конденсатора равен:

где Q—заряд конденсатора, а Eб—напряжение источника. Об этой форму­ле вы можете прочитать в учебнике по физике для  10-го класса.

Весь ток электрического заряда протекает через миллиамперметр за вре­мя одного периода измеряемого сигнала — Тизм. Отсюда среднее значение тока, то есть ток, который показывает прибор, равен:


где fизм— частота в герцах. Остальные обозначения вам уже известны. Чтобы получить окончательное выражение формулы. Q мы заменили на

Теперь решим полученное выражение относительно fизм и получим искомую формулу, связывающую частоту сигнала с показаниями миллиам­перметра:

где С2 — емкость в микрофарадах, Iпр — показания стрелочного прибора в миллиамперах,  Еб—напряжение источника питания в вольтах,  Еб = 9 В.

Емкость конденсатора и напряжение питания постоянны. Следовательно, ток, проходящий через прибор, зависит только от измеряемой частоты сигнала. При конденсаторе С2 = 1,1 мкФ расчетная формула принимает вид:

Например, прибор показывает ток, равный 0,5 мА. В этом случае измеряе­мая частота равна 50 Гц.

В схеме частотомера используется миллиамперметр с током полного от­клонения в 1 мА, что будет соответствовать частоте 100 Гц.

При С2 =0,11  мкФ расчетная формула принимает вид:

что соответствует  1000 Гц при полном отклонении стрелки прибора.

Изготовление частотомера  начинайте с подбора необходимых радиоде­талей согласно электрической схеме  (см. приложения, рисунок 18).

В качестве миллиамперметра подойдет любой стрелочный прибор по­стоянного тока с чувствительностью 1 мА на всю шкалу.

Необходимую величину емкости С2 проще всего получить из двух парал­лельно включенных конденсаторов.

Транзистор T1 может быть любого .типа из МП39—МП42. Лишь бы он был исправен и имел коэффициент усиления 50—100. Перед тем, как его впаивать в схему, не забудьте проверить на тестере.

Величина резистора R1, подбирается в зависимости от b транзистора из условия работы каскада строго на середине линейной характеристики.

При проверке диодов Д1 и Д2 на омметре обратите внимание на величину прямого сопротивления. Отберите те, у которых наименьшее прямое сопро­тивление. Схема настолько проста, что предварительно собирать ее на макет­ном шасси нет необходимости. Один из вариантов расположения деталей на плате, а также общий вид прибора показаны на рисунке 9.

После того, как прибор смонтирован и подобрана величина резистора R1 еще раз проверьте полярность подключения диодов. Шкалу стрелочного прибора разметьте в герцах или метрах.

Сборка звукового локатора

Полная схема звукового локатора дана на рисунке 19 (см. приложения). Она включает три платы: плату усилителя сигналов, плату уси­лителя мощности и плату звукового генератора с детектором. С работой и изготовлением всех трех плат вы познакомились. Как работает частото­мер, тоже знаете. Микрофон и громкоговоритель можно использовать от эхолокатора «Редут-0001». Не забудьте, что громкоговоритель подключается без выходного трансформатора, прямо к точкам а-а (рис. 5).

Из физики вы знаете, как подсчитать длину волны звуковых колебаний, зная их частоту и скорость звука. Формула такая:

где l — длина волны звука в воздухе в сантиметрах, с — скорость звука в воздухе в сантиметрах за секунду, f частота звуковых колебаний в герцах. В нашем локаторе частота звуковых колебаний выбрана равной 5000 Гц. Отсюда длина волны звуковых колебаний в воздухе равна 6,8 см.

Рупор будет тогда излучать и принимать звук узким пучком, когда его размеры больше длины волны. Рупор от локатора «Редут-0001» этому усло­вию полностью не удовлетворяет. Лучше сделать другой рупор, большего размера, а капсюль оставить от ДЭМШ-1. Одно плохо: сразу же увеличатся габариты аппаратуры в целом.

Конструктивно локатор может быть выполнен в двух вариантах (см. приложения, рисунок 20). Один из них рассчитан на установку аппаратуры на катер или автомобиль, второй — чтобы держать в руках. Оба варианта питаются от комплекта ба­тарей из двух 3336Л.

Проверку работы локатора начинайте на предметах, имеющих большую поверхность отражения, таких, как забор или стена дома. Убедившись, что все работает, переходите к обнаружению стволов деревьев и густых кустар­ников. При некотором опыте вы и их будете уверенно «видеть» на расстоя­нии до 5 м.

Используя звуковой локатор для измерения скорости звука, частоту им­пульсных посылок придется определять с большей точностью. Описанный частотомер для этих целей уже не подойдет. Он слишком груб. Здесь по­дойдет метод измерения частоты с помощью осциллографа и звукового гене­ратора по фигуре Лиссажу.

Установите жестко локатор на расстоянии пяти метров от глухой стены здания и измерьте частоту звуковых импульсов в герцах. Скорость звука при этом определяется по формуле:

с – 4l •f    (м/с),

где l - расстояние от рупора до стены в метрах.

Чем точнее измерите расстояние до препятствия и частоту импульсов, гсм точнее получите результат. Эксперимент можно усложнить и попытаться определить зависимость скорости звука от температуры и влажности воздуха.

Хотя звуковой локатор я и назвали моделью, но работает он отлично, как настоящий!


Литература

1. Э.Ш.Айрапетьянц, А.И.Константинов, «Эхолокация в природе», Ленинград, издательство «Наука» ленинградское отделение, 1974г.

2. В.Г.Борисов, “Юный радиолюбитель”, Москва, издательство «Радио и связь», 1972г.

3. А.И.Константинов, «Эхолокация животных», Москва, издательство «Знание», 1982г.

4. Ю.М.Отряшенков, “Юный кибернетик”, Москва, издательство «Радио и связь», 1978г.

5. Р. Сворень «Электроника шаг за шагом», Москва, издательство «Детская литература», 1986г.

6. С.Э.Хайкин, “Словарь радиолюбителя”, издательство «Радио и связь», 1966г.

7. «Большая энциклопедия животного мира», / Е.Л.Богатырева, Т.В.Воронина, М.В.Комогорцева и др., Москва, издательство «Росмэн», 2001г.


Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.